• My NEB
  • Print
  • PDF
  • Epigenetics

    New England Biolabs has called upon its 35 years of expertise in enzymology to develop a suite of validated reagents for epigenetics research. This line of easy-to-use EpiMark® kits simplifies DNA methylation and hydroxymethylation detection and analysis, as well as ChIP, histone and nucleosome analysis. Independently applicable, individual epigenetics reagents also complement the EpiMark® kits. NEB's methylation- and hydroxymethylation- sensitive or dependent enzymes, DNA methyltransferases and DNA controls are all useful for mapping DNA modifications and methylating DNA at specific sites for gene expression studies. Our protein methyltransferases and recombinant histones perform efficiently in protein modification and characterization studies. Our range of modified and unmodified genomic DNAs can be used as controls for detection of DNA methylation. Our series of human DNA (cytosine-5) methyltransferase (DNMT) antibodies are ideally suited for Western blots and immunoprecipitation.

    Our complete Epigenetics suite is expertly designed for optimized research and discovery.

    EpiMark® is a registered trademark of New England Biolabs, Inc.
    1. What Is Epigenetics?

      If all cells are created from the same genetic material, why are there so many different cell types? Listen to Sriharsa Pradhan, Senior Scientist, RNA Biology at NEB, as he describes how DNA is methylated and how this affects the path of reading the DNA code the same way an obstruction would derail a train off its tracks.

    Learn More

    Epigenetics includes these subcategories:

    Antibodies Information

    Control DNA Information
    Epigenetic Analysis (Epimark® Validated) Information
    Histones Information
    Methylation Dependent Restriction Enzymes for Epigenetics
    Methylation Sensitive Restriction Enzymes for Epigenetics
    Methyltransferases for Epigenetics

      Publications related to Epigenetics:

    1. Grant, T.J., et al. (2012). Antiproliferative small-molecule inhibitors of transcription factor LSF reveal oncogene addiction to LSF in hepatocellular carcinoma Proc. Natl. Acad. Sci. USA. 109, 4503-4508. PubMedID: 22396589
    2. Gu, L.Q., et al. (2012). Detection of miRNAs with a nanopore single-molecule counter Expert Rev. Mol. Diagn.. 12, 573-584. PubMedID: 22845478
    3. Ho, J.J., et al. (2012). Functional importance of Dicer protein in the adaptive cellular response to hypoxia J. Biol. Chem.. 17, 29003-20. PubMedID: 22745131, DOI: 10.174/jbcM112.373365
    4. Gong, H. wt al. (2012). Near-infrared fluorescence imaging of mammalian cells and xenograft tumors with SNAP-tag PLoS ONE. 7, PubMedID: 22479502
    5. Sexton T, Kurukuti S, Mitchell JA, Umlauf D, Nagano T, Fraser P (2012). Sensitive detection of chromatin coassociations using enhanced chromosome conformation capture on chip Nat Protoc. 7(7), 1335-50. PubMedID: 22722369, DOI: 10.1038/nprot.2012.071
    6. Stroud, H., et al. (2011). 5-Hydroxymethylcytosine is associated with enhancers and gene bodies in human embryonic stem cells Gen. Biol.. PubMedID: 21689397
    7. Canc. Res. (2011). 6-Thioguanine reactivates epigenetically silenced genes in acute lymphoblastic leukemia cells by facilitating proteasome-mediated degradation of DNMT1. 71, 1904-1911. PubMedID: 21239472
    8. (2011). Comparitive characterization of the PvuRts11 family and application in mapping genomic 5-hydroxymethylcytosine Nucl. Acids Res.. 39, 9294-9305. PubMedID: 21813453, DOI: 10.1093/nar/gkr607
    9. Ficz, G., et al. (2011). Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation Nature . PubMedID: 21460836, DOI: 10.1038/nature10008
    10. Diep, D. and Zhang, K. (2011). Genome-wide mapping of the sixth base Genome Biol. . 12, 116. PubMedID: 21682934, DOI: 10.1186/gb-2010-12-6-116
    11. Wolff, E.M. et al. (2011). Hypomethylation of a LINE-1 Promoter Activates an Alternate Transcript of the MET Oncogene in Bladders with Cancer PLoS Genet. . 6, 4:e1000917. PubMedID: 20421991, DOI: 10.1371/journal.pgen.1000917
    12. Cohen-Karni, D, et al. (2011). The MspJI family of modification-dependent restriction endonucleases for epigenetic studies Proc. Natl. Acad. Sci. . PubMedID: 21690366, DOI: 10.1073/pnas.1018448108
    13. Kinney, S.M. et al. (2011). Tissue specific distribution and dynamic changes of 5-hydroxymethylcytosine in mammalian genome J. Biol. Chem. . PubMedID: 21610077, DOI: 10.1074/jbc.m110.217083
    14. Nelson, F.K, et. al. (2011). Introduction and historical overview of DNA sequencing Curr. Prot. Mol. Biol.. Unit 7.0.1-7.0.18,
    15. Zhang, J. et al. (2011). Cyclophosphamide perturbs cytosine methylation in jurkat-T Cells through LSD1-mediated stabilization of DNMT1 Protein Chem. Res. Toxicol.. 24(11), 2040-2043. PubMedID: 22007908
    16. Jensen, H.M., et al. (2010). Engineering of a synthetic electron conduit in living cells Proc. Natl. Acad. Sci. USA. 107, 19213-19218. PubMedID: 20956333
    17. Wanunu, M., et al. (2010). Rapid electronic detection of probe-specific microRNAs using thin nanopore sensors Nature Nanotech. 5, 807-814. PubMedID: 20972437
    18. Laget, S., et al. (2010). The human proteins MBD5 and MBD6 associate with heterochromatin but they do not bind methylated DNA PLoS One. 5, PubMedID: 20700456
    19. Wanunu, M. et al. (2010). Discrimination of methylcytosine from hydroxymethylcytosine in DNA molecular J. Am. Chem. Soc.. 133(3), 486-492. PubMedID: 21155562
    20. Zheng, Y. et al. (2010). A unique family of Mrr-like modification-dependent restriction endonucleases Nucl. Acids Res.. 38(16), 5527-5534. PubMedID: 20444879

    Types of Histone Modifications

    Amino Acid Modification
    Lysine Methylation, Acetylation,
    Ubiquitination, Sumoylation,
    Arginine Methylation
    Serine Phosphorylation
    Threonine Phosphorylation

    Types of DNA Modifications


    1. Kim, J.K., Samaranayake, M. and Pradhan S. (2009) Cell. Mol. Life Sci. 66, 596-612. PMID: 18985277
    2. Vanyushin, B.F. (2006) Curr. Top. Microbiol. Immunol. 301, 67-122. PMID: 16570846
    3. Mosher, R.A., Melnyk, C.W. (2010) Trends Plant Sci. 15, 204-210. PMID: 20129810
    4. Lyko, F., Beisel, C., Marhold, J., Paro, R. (2006) Curr. Top. Microbiol. Immunol. 310, 23-44. PMID: 16909905
    5. Selker, E.U., Freitag, M., Kothe, G.O., et al. (2002) Proc. Natl. Acad. Sci. U S A. 99, Suppl 4, 16485-16490. PMID: 12189210
    6. Kriaucionis, S. and Heintz, N. (2009) Science 324, 929-930. PMID: 19372393
    7. Tahiliani, M., Koh, K. P., Shen, Y., et al. (2009) Science 324, 930-935. PMID: 19372391
    8. Ehrlich, M., Wilson, G.G., Kuo, K.C., And Gehrke, C.W. (1987) J. Bacteriol. 169, 939-943. PMID: 3029036
    9. Svadbina, I.V., Zelinskaya, N.V., Kovalevskaya, N.P., Zheleznaya, L.A. and Matvienko, N.I. (2004) Biochem. (Moscow) 69, 299-305. PMID: 15061697
    10. Ratel, D., Ravanat, J-L., Berger, F. and Wion D. (2006) Bioessays 28, 309-315. PMID: 16479578
    11. Marinus, M.G. and Casadesus, J. (2009) FEMS Microbiol. Rev. 33, 488-503. PMID: 19175412

    ChIP-Seq Library Construction Workflow