DNA Amplification

High-Fidelity PCR

The fidelity of a polymerase refers to its ability to insert the correct base during PCR. Conversely, the rate of misincorporation is known as a polymerase’s error rate. High-fidelity PCR, utilizes a DNA polymerase with a low error rate and results in a high degree of accuracy in the replication of the DNA of interest. NEB scientists were the first to identify and commercialize a high-fidelity DNA polymerase suitable for PCR, namely Vent® DNA Polymerase. Since its discovery, several other high fidelity polymerases have been discovered and engineered – all with differing processivity, speed and levels of accuracy.

When do you need a high-fidelity dna polymerase?

Comparison of High-Fidelity Polymerases

1 PCR-based mutation screening in lacZ (NEB), lacI (Agilent) or rpsL (Life)

2 Due to the very low frequency of misincorporation events being measured, the error rate of high-fidelity enzymes like Q5 is difficult to measure in a statistically significant manner. Although measurements from assays done side-by-side with Taq yield a Q5 fidelity values of approximately 200X Taq, we report “>100X Taq” as a conservative value.

3 Takagi et al (1997) Appl. Env. Microbiol. 63, 4504-4510.

FAQs for High-Fidelity PCR

Protocols for High-Fidelity PCR

    Publications related to High-Fidelity PCR

  1. Yonghe Zhang, Huiming Huang, Shanshan Xu, Bo Wang, Jianhua Ju, Huarong Tan, Wenli Li 2015. Activation and enhancement of Fredericamycin A production in deepsea-derived Streptomyces somaliensis SCSIO ZH66 by using ribosome engineering and response surface methodology. Microb Cell Fact. 14, PubMedID: 25927229, DOI: 10.1186/s12934-015-0244-2
  2. Christine Henke, Pamela L Strissel, Maria-Theresa Schubert, Megan Mitchell, Claus C Stolt, Florian Faschingbauer, Matthias W Beckmann, Reiner Strick 2015. Selective expression of sense and antisense transcripts of the sushi-ichi-related retrotransposon - derived family during mouse placentogenesis. Retrovirology. 12, PubMedID: 25888968, DOI: 10.1186/s12977-015-0138-8
  3. Amin Zargar, David N Quan, Milad Emamian, Chen Yu Tsao, Hsuan-Chen Wu, Chelsea R Virgile, William E Bentley 2015. Rational design of 'controller cells' to manipulate protein and phenotype expression. Metab Eng. , PubMedID: 25908186, DOI: 10.1016/j.ymben.2015.04.001
  4. Yuan Xue, Jossef Osborn, Anand Panchal, Jay L Mellies 2015. The RpoE Stress Response Pathway Mediates Reduction of the Virulence of Enteropathogenic Escherichia coli by Zinc. Appl Environ Microbiol. 81, PubMedID: 25819956, DOI: 10.1128/AEM.00507-15
  5. Harish Nag Kankipati, Marta Rubio-Texeira, Dries Castermans, George Diallinas, Johan M Thevelein 2015. Sul1 and Sul2 Sulfate Transceptors Signal to Protein Kinase A upon Exit of Sulfur Starvation. J Biol Chem. 290, PubMedID: 25724649, DOI: 10.1074/jbc.M114.629022
  6. Binyamin D Berkovits, Christine Mayr 2015. Alternative 3' UTRs act as scaffolds to regulate membrane protein localization. Nature. , PubMedID: 25896326, DOI: 10.1038/nature14321
  7. Jun Wu, Daiji Okamura, Mo Li, Keiichiro Suzuki, Chongyuan Luo, Li Ma, Yupeng He, Zhongwei Li, Chris Benner, Isao Tamura, Marie N Krause, Joseph R Nery, Tingting Du, Zhuzhu Zhang, Tomoaki Hishida, Yuta Takahashi, Emi Aizawa, Na Young Kim, Jeronimo Lajara, Pedro Guillen, Josep M Campistol, Concepcion Rodriguez Esteban, Pablo J Ross, Alan Saghatelian, Bing Ren, Joseph R Ecker, Juan Carlos Izpisua Belmonte 2015. An alternative pluripotent state confers interspecies chimaeric competency. Nature. , PubMedID: 25945737, DOI: 10.1038/nature14413
  8. Longhai Dai, Can Liu, Yueming Zhu, Jiangsheng Zhang, Yan Men, Zeng Yan, Yuanxia Sun 2015. Functional Characterization of Cucurbitadienol Synthase and Triterpene Glycosyltransferase Involved in Biosynthesis of Mogrosides from Siraitia grosvenorii. Plant Cell Physiol. , PubMedID: 25759326, DOI: 10.1093/pcp/pcv043
  9. Yafeng Li, Delu Song, Ying Song, Liangliang Zhao, Natalie Wolkow, John W Tobias, Wenchao Song, Joshua L Dunaief 2015. Iron-induced Local Complement Component 3 (C3) Up-regulation via Non-canonical Transforming Growth Factor (TGF)-β Signaling in the Retinal Pigment Epithelium. J Biol Chem. 290, PubMedID: 25802332, DOI: 10.1074/jbc.M115.645903
  10. Martin Kostovcik, Craig C Bateman, Miroslav Kolarik, Lukasz L Stelinski, Bjarte H Jordal, Jiri Hulcr 2014. The ambrosia symbiosis is specific in some species and promiscuous in others: evidence from community pyrosequencing. ISME J. , PubMedID: 25083930, DOI: 10.1038/ismej.2014.115
  11. Vidhyadhar Nandana, Sushant Singh, Abhay Narayan Singh, Vikash Kumar Dubey 2014. Procerain B, a cysteine protease from Calotropis procera, requires N-terminus pro-region for activity: cDNA cloning and expression with pro-sequence. Protein Expr Purif. 103C, PubMedID: 25173974, DOI: 10.1016/j.pep.2014.08.003
  12. Xin Duan, Arjun Krishnaswamy, Irina De la Huerta, Joshua R Sanes 2014. Type II Cadherins Guide Assembly of a Direction-Selective Retinal Circuit. Cell. 158, PubMedID: 25126785, DOI: 10.1016/j.cell.2014.06.047
  13. Bert De Rybel, Milad Adibi, Alice S. Breda, Jos R. Wendrich, Margot E. Smit, Ondej Novk, Nobutoshi Yamaguchi, Saiko Yoshida, Gert Van Isterdael, Joakim Palovaara, Bart Nijsse, Mark V. Boekschoten, Guido Hooiveld, Tom Beeckman, Doris Wagner, Karin Ljung, Christian Fleck, Dolf Weijers 2014. Integration of growth and patterning during vascular tissue formation in Arabidopsis Science. 345, PubMedID: 25104393, DOI: 10.1126/science.1255215

Legal Information

This product is covered by one or more patents, trademarks and/or copyrights owned or controlled by New England Biolabs, Inc (NEB).

While NEB develops and validates its products for various applications, the use of this product may require the buyer to obtain additional third party intellectual property rights for certain applications.

For more information about commercial rights, please contact NEB's Global Business Development team at gbd@neb.com.

This product is intended for research purposes only. This product is not intended to be used for therapeutic or diagnostic purposes in humans or animals.

  1. GCRichAmp_VideoThumb

    How Can I Improve Amplification of GC-rich Regions

    The secondary structures that form within GC-rich regions can make efficient DNA amplification difficult. Nicole’s suggestions can help!

  2. Choose_DNA_Polymerase_TN

    Choose the Right DNA Polymerase for PCR

    Make sure you're using the optimal polymerase for your DNA amplifications. Get tips on choosing the right DNA Polymerase for your application.

  3. ProofreadingPolymerase_thumb

    DNA Replication with a Proofreading Polymerase

    Learn how proofreading polymerases recognize and correct mismatched bases.

  4. Amplify_GC_rich_DNA_TN

    How to Amplify GC-rich DNA M0491 M0480

    Looking for tips on dealing with GC-bias in DNA amplification? NEB scientists have the expertise you need!

  5. Important_Tips_Q5_TN

    Important Tips for Q5 Polymerase

    Here are some quick tips for getting the most out of NEB's Q5® High-Fidelity DNA Polymerase.

  6. Why_Choose_Q5_TN

    Why Choose Q5 High-fidelity Polymerase?

    Not sure why Q5® is your best choice for high-fidelity amplification of GC-rich targets? NEB's scientists will show you why we call Q5 an "ultra-high fidelity polymerase".