Cellular Analysis

Cellular Analysis

SNAP- and CLIP-tag protein labeling systems enable the specific, covalent attachment of virtually any molecule to a protein of interest. There are two steps to using this system: cloning and expression of the protein of interest as a SNAP-tag® fusion, and labeling of the fusion with the SNAP-tag substrate of choice. The SNAP-tag is a small protein based on human O6-alkylguanine-DNA-alkyltransferase (hAGT), a DNA repair protein. SNAP-tag substrates are dyes, fluorophores, biotin, or beads conjugated to guanine or chloropyrimidine leaving groups via a benzyl linker. In the labeling reaction, the substituted benzyl group of the substrate is covalently attached to the SNAP-tag. CLIP-tag™ is a modified version of SNAP-tag, engineered to react with benzylcytosine rather than benzylguanine derivatives. When used in conjunction with SNAP-tag, CLIP-tag enables the orthogonal and complementary labeling of two proteins simultaneously in the same cells. 

SNAP-tag® is a registered trademark of New England Biolabs, Inc.
CLIP-tag™ is a trademark of New England Biolabs, Inc.

  1. Fluorescent Labeling of COS-7 Expressing SNAP-tag Fusion Proteins for Live Cell Imaging

    Watch as Chris Provost, of New England Biolabs, performs fluorescent imaging of live COS-7 cells expressing SNAP-tag® fusion proteins.

  2. SNAP-tag Overview Tutorial

    View an interactive tutorial explaining the mechanism of our SNAP-tag® technologies and reagents available for researchers wishing to study the function and localization of proteins in live or fixed cells.

Cellular Analysis includes these subcategories:

Starter Kits Information
SNAP-tag® Substrates Information
CLIP-tag™ Substrates Information
ACP/MCP-tag Substrates Information
Blocking Agents Information
Cloning Vectors & Control Plasmids Information
Synthases Information
Biotin/Vista Labels Information
Building Blocks Information

    Publications related to Cellular Analysis:

  1. Eckhardt, M. et al. (2011). A SNAP-tagged detivative of HIV-1 - A versatile tool to study virus-cell interactions PLoS One . 6:e22007. PubMedID: 21799764, DOI: 10.137/journal. P One .0022007
  2. Hoskins, A. et al. (2011). Ordered and dynamic assembly of single spliceoseoms Science . 331, 1289. PubMedID: 21393538
  3. Nicolle O. et al. (2010). Development of SNAP-tag-mediated live cell labeling as an alternative to GFP in Porphyromonas gingivalis FEMS Immunol. Med. Microbiol.  . 59, 357-363. PubMedID: 20482622
  4. Ruggiu A. A. et al. (2010). Fura-2FF-based calcium indicator for protein labeling Org. Biomol. Chem. . 8, 3398-3401. PubMedID: 20556282
  5. Campos, C. et al. (2010). Labeling cell structures and tracking cell lineage in zebrafish using SNAP-Tag Dev. Dynamics . 240, 820-827. PubMedID: 21360787
  6. Alvarez-Curto J. et al. (2010). Ligand regulation of the quaternary organization of cell surface M3 muscarinic acetylcholine receptors analyzed by fluorescence resonance energy transfer (FRET) imaging and homogenous time-resolved FRET J. Biol. Chem. . 285, 23318-23330. PubMedID: 20489201
  7. Ciruela F. et al. (2010). Lighting up multiprotein complexes: lessons from GPCR oligomerization Trends Biotechnol . 28, 407-415. PubMedID: 20542584
  8. Kamiya M. and Johnsson K. (2010). Localizable and Highly Sensitive Calcium Indicator Based on a BODIPY Fluorophore Anal. Chem. . 82, 6472-6479. PubMedID: 20590099
  9. Rhee S. G. et al. (2010). Methods for detection and measurement of hydrogen peroxide inside and outside of cells Mol. Cells . 29, 539-549. PubMedID: 20526816
  10. Srikun, D. et al. (2010). Organelle-targetable fluorescent probes for imaging hydrogen peroxide in living cells via SNAP-tag protein labeling  J. Am. Chem. Soc. . 132, 4455-4465. PubMedID: 20201528
  11. Maurel D. et al. (2010). Photoactivatable and photoconvertible fluorescent probes for protein labeling ACS Chem. Biol. Asap . PubMedID: 20218675
  12. Kampmeier, F. et al. (2010). Rapid optical imaging of EGF receptor expression with a single-chain antibody SNAP-tag fusion protein Eur. J. Med. Mol. Imaging . PubMedID: 20449589, DOI: 10.007/S00259-010-1482-5
  13. Hein B. et al. (2010). Stimulated emission depletion nanoscopy of living cells using SNAP-Tag fusion proteins Biophys. J.  . 98, 158-163. PubMedID: 20074516
  14. Dellagiacoma, C. et al. (2010). Targeted photoswitchable probe for nanoscopy of biological structures ChemBioChem . PubMedID: 20540058, DOI: 10.1002/Cbic.201000189
  15. Geissbuehler M. et al. (2010). Triplet imaging of oxygen consumption during the contraction of a single smooth muscle cell Biophys. J. . 98, 339-349. PubMedID: 22259112
  16. Engin S. et al. (2010). Benzylguanine Thiol self-assembled monolayers for the immobilization of SNAP-tag proteins on microcontact-printed surface structures Langmuir . ASAP, PubMedID: 20369837
  17. Zelman-Femiak, M. et al. (2010). Covalent quantum dot receptor linkage via the acyl carrier protein for single-molecule tracking, internalization, and trafficking studies BioTechniques . 49, 2. PubMedID: 20701592
  18. Waichman S. et al. (2010). Functional Immobilization and Patterning of Proteins by an Enzymatic Transfer Reaction Anal. Chem. . 82, 1478-1485. PubMedID: 20092261
  19. Mosiewicz, K. A. et al. (2010). Phosphopantetheinyl Transferase-Catalyzed Formation of Bioactive Hydrogels for Tissue Engineering J. Am. Chem. Soc. . 132, 5972-5974. PubMedID: 20373804
  20. Hill Z. B. (2009). A chemical genetic method for generating bivalent inhibitors of protein kinases J. Am. Chem. Soc. . 131, 6686-6688. PubMedID: 19391594
  21. Ahier A. et al. (2009). A new family of receptor tyrosine kinases with a venus flytrap binding domain in insects and other invertebrates activated by aminoacids PLoS One . 4, e5651. PubMedID: 19461966
  22. Stein V. and Hollfeder F. (2009). An efficient method to assemble linear DNA templates for in vitro screening and selection systems Nuc. Acids Res . 37, e122/1-e122/9. PubMedID: 19617373
  23. Sletten E. and Bertozzi C. (2009). Bioorthogonal Chemistry: Fishing for Selectivity in a Sea of Functionality Angew. Chem. Int. Ed. . 48, 6974-6998. PubMedID: 19714693
  24. Carroll C.W. et al. (2009). Centromere assembly requires the direct recognition of CENP-A nucleosomes by CENP-N Nat. Cell Biol. . 11, 896-902. PubMedID: 19543270
  25. Foltz D.R. et al. (2009). Centromere-specific assembly of CENP-a nucleosomes is mediated by HJURP Cell . 137, 472-84. PubMedID: 19410544
  26. Donovan C. et al. (2009). Characterization and subcellular localization of bacterial flotillin homologue Microbiology . 155, 1786-1799. PubMedID: 19383680
  27. Keppler A. et al. (2009). Chromophore-assisted laser inactivation of α- and γ-tubulin SNAP-tag fusion proteins inside living cells ACS Chem. Biol. . 4, 127-138. PubMedID: 19191588
  28. Chattopadhaya S. et al. (2009). Expanding the chemical Biologist's tool kit: chemical labelling strategies and its applications Curr. Med. Chem.  . 16, 4527-4543. PubMedID: 19903152
  29. Cornish, V. W. (2009). Fluorescence in living systems: applications in chemical biology Wiley Encyc. of Chem. Biol. . 2, 28-38.
  30. Degorce F. et al. (2009). HTRF: A technology tailored for drug discovery - a review of theoretical aspects and recent applications Curr. Chem. Genomics . 3, 22-32. PubMedID: 20161833
  31. Samoshkin A. et al. (2009). Human condensin function is essential for centromeric chromatin assembly and proper sister kinetochore orientation PLoS One . 4, e6831. PubMedID: 19714251
  32. Böhme I and Beck-Sickinger A. G. (2009). Illuminating the life of GPCRs Cell Commun. Signal . 7, 16. PubMedID: 19602276
  33. Bannwarth et. al. (2009). Indo-1 Derivatives for local calcium sensing JACS Chemical Biology . 4, 179-190. PubMedID: 19193035
  34. Milenkovic L. et al. (2009). Lateral transport of smoothened from the plasma membrane to the membrane of the cilium J. Cell Biol. . 187, 365-374. PubMedID: 19193035
  35. Farr G. A. et al. (2009). Membrane proteins follow multiple pathways to the basolateral cell surface in polarized epithelial cells J. Cell Biol. . 186, 269-282. PubMedID: 19620635
  36. Tivari R. and Parang K. (2009). Protein conjugates of SH3-domain ligands and ATP- competitive inhibitors as bivalent inhibitors of protein kinases ChemBioChem. . 10, 2445 - 2448. PubMedID: 19731277
  37. Brun M.A. et al. (2009). Semisynthetic fluorescent sensor proteins based on self-labeling protein tags J. Am. Chem. Soc. . 131, 5873-5784. PubMedID: 19348459
  38. Kapmeier F. et al. (2009). Site-Specific, covalent labeling of recombinant antibody fragments via fusion to an engineered version of 6-O-alkylguanine DNA alkyltransferase Bioconjug Chem. . 23-Apr, PubMedID: 19388673
  39. Uano Y. and Matsuzaki K. (2009). Tag-probe labeling methods for live-cell imaging of membrane proteins Biochim. Biophys. Acta. . 1788, 2124-2131. PubMedID: 19646952
  40. Johnsson K. (2009). Visualizing biochemical activities in living cells Nat Chem Biol . 5, 63-65. PubMedID: 19148167
  41. Neugart F. et al. (2009). Detection of ligand-induced CNTF receptor dimers in living cells by fluorescence cross correlation spectroscopy Biochim. Biophys. Acta.  . 1788, 1890-1900. PubMedID: 19482006
  42. Eggeling C. et al. (2009). Direct observation of the nanoscale dynamics of membrane lipids in a living cell Nature . 457, 1159-1163. PubMedID: 19098897
  43. Gralle M. et al. (2009). Neuroprotective secreted amyloid precursor protein acts by disrupting amyloid precursor protein dimers J. Biol. Chem. . 284, 15016-15025. PubMedID: 19336403
  44. Gautier A. et al. (2009). Selective cross-linking of interacting proteins using self-labeling tags J. Am. Chem. Soc. . 131, 17954-17962. PubMedID: 19916541
  45. Chidley C. et al. (2008). A designed protein for the specific and covalent heteroconjugation of biomolecules Bioconj. Chem. . 19, 1753-1756. PubMedID: 18754573
  46. Gautier A. et al. (2008). AGT/SNAP-Tag: A versatile tag for covalent protein labeling from probes and tags to study biomolecular function Ed. Edited by Miller, L. W. . 89-107.
  47. Banala J. et al. (2008). Caged substrates for protein labeling and immobilization Chembiochem . 4, PubMedID: 18033718
  48. Maurel D. et al. (2008). Cell-surface protein-protein interaction analysis with time-resolved FRET and SNAP-tag technologies: application to GPCR oligomerization Nature Methods . 5, 561-7. PubMedID: 18488035
  49. Adams D. G. et al. (2008). Cellular Ser/Thr-kinase assays using generic peptide substrates Curr. Chem. Gen. . 1, 54-64. PubMedID: 20161828
  50. Fururta, K. et al. (2008). Diffusion and directed movement: in vitro motile properties of fission yeast kinesin-14 Plk1 J. Biol. Chem.  . 283, 36465-36473. PubMedID: 18984586
  51. Erhardt, S. et al. (2008). Genome-wide analysis reveals a cell cycle-dependent mechanism controling centromere propagation J. Cell Biol.. 183, 805-818. PubMedID: 19047461
  52. Howland S.W. et al. (2008). Inducing efficient cross-priming using antigen-coated yeast particles J. Immunother.. 31, 607-19. PubMedID: 18600183
  53. Southwell, A.L. et al. (2008). Intrabodies binding the proline-rich domains of mutant huntingtin increase its turnover and reduce neurotoxicity J. Neurosci. . 28, 9013-20. PubMedID: 18768695
  54. Mao S. et al. (2008). Optical lock-in detection of FRET using synthetic and genetically encoded optical switches Biophys. J. . 94, 4515-24. PubMedID: 18281383
  55. Tomat, E. et al. (2008). Organelle-specific zinc detection using zinpyr-labeled fusion proteins in live cells J. Am. Chem. Soc. . 130, PubMedID: 18973293
  56. Lin M.Z. and Wang L. (2008). Selective labeling of proteins with chemical probes in living cells Physiology . 23, 131-141. PubMedID: 18556466
  57. McMurray, M.A. and Thorner, J. (2008). Septin stability and recycling during dynamic structural transitions in cell division and development Current Biology . 18, 1203-1208. PubMedID: 18701287
  58. Johnson K. (2008). SNAP-tag Technologies: Novel tools to study protein function NEB Expressions . 3.3, 1-3.
  59. Generosi J. et al. (2008). AMPA receptor imaging by infrared scanning near-field optical microscopy Physica Status Solidi C: Current Topics in Solid State Physics . 5, 2641-2644.
  60. Gautier A. et al. (2008). An engineered protein tag for multiprotein labeling in living cells Chemistry & Biology . 15, 128-136. PubMedID: 18291317
  61. Sunbul M. et al. (2008). Enzyme catalyzed site-specific protein labeling and cell imaging with quantum dots Chem. Comm. . 5927-5929. PubMedID: 19030541
  62. Generosi J. et al. (2008). Photobleaching-free infrared near-field microscopy localizes molecules in neurons J. App. Phys. . 104, 106102-1/3.
  63. Schulz C. and Köhn M. (2008). Simultaneous protein tagging in two colors Chemistry & Biology . 15, PubMedID: 18291310
  64. Kropf M. et al. (2008). Subunit-specific surface mobility of differentially labeled AMPA receptor subunits Eur. J. Cell Biol. . 87, 763-778. PubMedID: 18547676
  65. Iversen L. et al. (2008). Templated protein assembly on micro-contact-printed surface patterns. Use of the SNAP-tag protein functionality  Langumuir. May 17, PubMedID: 18484753
  66. Mottram L. F. et al. (2007). A Concise Synthesis of the Pennsylvania green fluorophore and labeling of intracellular targets with O6-Benzylguanine Derivatives  Org. Lett. . 9, 3741-3744. PubMedID: 17705395
  67. Stein, V. et al. (2007). A covalent chemical genotype-phenotype linkage for in vitro protein evolution ChemBioChem. . 8, 2191-4. PubMedID: 17948318
  68. Stenoien D. L. et al. (2007). Cellular trafficking of phospholamban and formation of functional sarcoplasmic reticulum during myocyte differentiation Am. J. Physiol. Cell Physiol.  . 292, C2084-C2094. PubMedID: 17287364
  69. O'Hare H.M. et al. (2007). Chemical probes shed light on protein function Curr. Opin. Struct. Biol. . 17, 488-94. PubMedID: 17851069
  70. Johnsson N. and Johnsson K. (2007). Chemical tools for biomolecular imaging ACS Chem. Biol. . 2, 31-38. PubMedID: 17243781
  71. Pick H. et al. (2007). Distribution plasticity of the human estrogen receptor alpha in live cells: distinct imaging of consecutively expressed receptors J. Mol. Biol. . 14, 1213-1223. PubMedID: 17991486
  72. Lemercier, G. et al. (2007). Inducing and sensing protein-protein interactions in living cells by selective cross-linking Angew Chem. Int. Ed . 4281-4284. PubMedID: 17465435
  73. Jansen L. et al (2007). Propagation of centromeric chromatin requires exit from mitosis  J. of Cell Bio. . 176, 795-805. PubMedID: 17339380
  74. Böhme. et al. (2007). Tracking of human Y receptors in living cells- A fluorescence approach Peptides. 28, 226-234. PubMedID: 17207557
  75. Zhou Z. et al. (2007). Genetically encoded short peptide tags for orthogonal protein labeling by Sfp and AcpS phosphopantetheinyl transferases ACS Chemical Biology . 2, 337-346. PubMedID: 17465518
  76. Liu E and Bruner S. D. (2007). Rational manipulation of carrier-domain geometry in nonribosomal peptide synthetases ChemBioChem. . 8, 617 - 621. PubMedID: 17335097
  77. Gronemeyer T. et al. (2006). Adding value to fusion proteins through covalent labeling Curr. Opin. Biotechn. . 16, PubMedID: 15967656
  78. Gronemeyer T. et al. (2006). Directed evolution of O6-alkylguanine-DNA alkyltransferase for applications in protein labeling Prot. Eng. Des. Sel. . 19, 309-16. PubMedID: 12725859
  79. Tirat A. et al. (2006). Evaluation of two novel tag-based labeling technologies for site-specific modification of proteins Int. J. Biol. Macromol.. 39, 66-76. PubMedID: 16503347
  80. Heinis C. et al. (2006). Evolving the substrate specificity of O6 alkylguanine DNA alkyltransferase through loop insertion for applications in molecular imaging ACS Chem Biol. . 1, 575-584. PubMedID: 17168553
  81. Krayl M. et al. (2006). Fluorescence-mediated analysis of mitochondrial preprotein import in vitro Anal. Biochem.  . 335, 81-9. PubMedID: 16750157
  82. Keppler A. et al. (2006). Fluorophores for live cell imaging of AGT fusion proteins across the visible spectrum BioTechniques . 41, 167-75. PubMedID: 16925018
  83. Meyer B.H. et al. (2006). Covalent labeling of cell-surface proteins for in vivo FRET studies FEBS Letters . 580, 1654-1658. PubMedID: 16497304
  84. Meyer B.H. et al. (2006). FRET imaging reveals that functional neurokinin-1 receptors are monomeric and reside in membrane microdomains of live cells Proc. Natl. Acad. Sci. USA . 103, 2138-43. PubMedID: 16461466
  85. Prummer M. et al. (2006). Post-translational covalent labeling reveals heterogeneous mobility of individual G protein-coupled receptors in living cells ChemBioChem . 7, 908-911. PubMedID: 16607667
  86. Sielaff I. et al. (2006). Protein function microarrays based on self-immobilizing and self-labeling fusion proteins ChemBioChem.. 7, 194-202. PubMedID: 16342318
  87. Jongsma M.A., Litjens R. H. (2006). Self-assembling protein arrays on DNA chips by auto-labeling fusion proteins with a single DNA address  Proteomics . 6, 2650-2655. PubMedID: 16596705
  88. Jacquier V. et al. (2006). Visualizing receptor trafficking in living PNAS . 103, 14325-14330. PubMedID: 16980412
  89. Juillerat A. et al. (2005). Engineering substrate specificity of O6-alkylguanine-DNA alkyltransferase for specific protein labeling in living cells ChemBioChem . 6, 1263-1269. PubMedID: 15934048
  90. Johnsson N. et al. (2005). Protein chemistry on the surface of living cells Chembiochem. . 6, 47-52. PubMedID: 15558647
  91. Regoes A. et al. (2005). SNAP-tag mediated live cell labeling as an alternative to GFP in anaerobic organisms BioTechniques . 39, 809-812.
  92. Kufer S.K. et al. (2005). Covalent immobilization of recombinant fusion proteins with hAGT for single molecule force spectroscopy Eur. Biophys. J . 35, 72-78. PubMedID: 16160825
  93. Yin J. et al. (2005). Labeling proteins with small molecules by site-specific posttranslational modification J Am Chem Soc. 126, 7754-7755. PubMedID: 15212504
  94. Cravatt B.F. (2005). Live chemical reports from the cell surface Chem. Biol. . 12, 954-956. PubMedID: 16183017
  95. Vivero-Pol L. et al. (2005). Multicolor imaging of cell surface proteins J. Am. Chem. Soc. . 127, 12770-12771. PubMedID: 16159249
  96. Tugulu S. et al. (2005). Protein-functionalized polymer brushes Biomacromolecules . 6, 1602-1607. PubMedID: 15877383
  97. Yin J. et al. (2005). Single-cell FRET imaging of transferrin receptor trafficking dynamics by Sfp-catalyzed, site-specific protein labeling Chem. Biol . 12, 999-1006. PubMedID: 16183024
  98. Keppler A. et al. (2004). Labeling of fusion proteins of O6-alkylguanine-DNA alkyltransferase with small molecules in vitro and in vivo Methods . 32, 437-444. PubMedID: 15003606
  99. Keppler A. et al. (2004). Labeling of fusion proteins with synthetic fluorophores in live cells PNAS . 101, 9955-9959.
  100. Kindermann M. et al. (2004). Synthesis and characterization of bifunctional probes for the specific labeling of fusion proteins Bioorg. Med. Chem. Lett. . 14, 2725-2728.
  101. La Clair, J.J. et al. (2004). Manipulation of carrier proteins in antibiotic biosynthesis Chem. Biol. . 11, 195-201. PubMedID: 15123281
  102. George N. et al. (2004). Specific labeling of cell surface proteins with chemically diverse compounds J .Am. Chem. Soc.  . 126, 8896-8897. PubMedID: 15264811
  103. Huber W. et al. (2004). SPR-based interaction studies with small molecular weight ligands using hAGT fusion proteins Anal. Biochem. . 333, 280-288. PubMedID: 15450803
  104. Keppler A. et al. (2003). A general method for the covalent labeling of fusion proteins with small molecules in vivo Nature Biotechnology . 21, 86-89.
  105. Gendreizig S. et al. (2003). Covalent labeling of fusion proteins with chemical probes in living cells Chimia . 57, 181-183.
  106. Juillerat A. et al. (2003). Directed evolution of O6-alkylguanine-DNA alkyltransferase for efficient labeling of fusion proteins with small molecules in vivo Chem. Biol.  . 10, 313-317.
  107. Gendreizig, S. et al. (2003). Induced protein dimerizaton in vivo through covalent labeling JACS . 125, 14970-14971. PubMedID: 14653715
  108. Kindermann M. et al. (2003). Covalent and selective immobilization of fusion proteins JACS . 125, 7810-7811. PubMedID: 12822993
  109. Damoiseaux, R. et al (2002). Towards the generation of artificial O6-alkylguanine-DNA alkyltransferases: in vitro selection of antibodies with reactive cysteine residues ChemBioChem . 3, 573-575. PubMedID: 12325014


  • Simultaneous dual protein labeling inside live cells
  • Protein localization and translocation
  • Pulse-chase experiments
  • Receptor internalization studies
  • Selective cell surface labeling
  • Protein pull-down assays
  • Protein detection in SDS-PAGE
  • Flow cytometry
  • High throughput binding assays in microtiter plates
  • Biosensor interaction experiments
  • FRET-based binding assays
  • Single molecule labeling
  • Super-resolution microscopy

Selected Publications by Application


Lukinavičius, G. et al. (2015) "Fluorescent labeling of SNAP-tagged proteins in cells" Methods Mol. Biol. 1266, 107-118.
Corrêa Jr., I. R. (2015) "Considerations and protocols for the synthesis of custom protein labeling probes" Methods Mol. Biol. 1266, 55-79.
Corrêa Jr., I. R. (2014) "Live-cell reporters for fluorescence imaging" Curr. Opin. Chem. Biol. 20, 36-45.

Single-Molecule Imaging

Bosch, P. J. et al. (2014) "Evaluation of fluorophores to label SNAP-tag fused proteins for multicolor single-molecule tracking microscopy in live cells" Biophys. J. 107, 803-814.
Smith, B. A. et al. (2013) "Three-color single molecule imaging shows WASP detachment from Arp2/3 complex triggers actin filament branch formation" eLife 2, e01008.
Jaiswal, R. et al. (2013) "The Formin Daam1 and Fascin Directly Collaborate to Promote Filopodia Formation" Curr. Biol. 23, 1373-1379.
Breitsprecher, D. et al. (2012) "Rocket Launcher Mechanism of Collaborative Actin Assembly Defined by Single-Molecule Imaging" Science 336, 1164-1168.
Hoskins, A. A. et al. (2011) "Ordered and dynamic assembly of single spliceosomes." Science 331 (6022), 1289-1295.

Super-Resolution Imaging

Zhao, Z. W. et al. (2014) "Spatial organization of RNA polymerase II inside a mammalian cell nucleus revealed by reflected light-sheet superresolution microscopy" Proc. Natl. Acad. Sci. USA 111, 681-686.
Lukinavičius, G. et al. (2013) "A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins" Nat. Chem. 5, 132-139.
Jones, S. A. et al. (2011) "Fast, three-dimensional super-resolution imaging of live cells." Nat. Methods 8, 499-505.
Klein, T. et al. (2011) "Live-cell dSTORM with SNAP-tag fusion proteins." Nat. Methods 8, 7-9.
Pellett, P. A. et al. (2011) "Two-color STED microscopy in living cells." Biomed. Opt. Expr. 2, 2364-2371
Hein, B. et al. (2010) "Stimulated Emission Depletion Nanoscopy of Living Cells Using SNAP-Tag Fusion Proteins." Biophys. J. 98, 158-163.

Tissue and Animal Imaging:

Yang, G. et al. (2015) "Genetic targeting of chemical indicators in vivo" Nat. Methods 12, 137-139.
Kohl, J. et al. (2014) "Ultrafast tissue staining with chemical tags" Proc. Natl. Acad. Sci. USA 111, E3805-E3814.
Ivanova, A. et al. (2013) "Age-dependent labeling and imaging of insulin secretory granules" Diabetes 62, 3687-3696.
Gong, H. et al. (2012) "Near-Infrared Fluorescence Imaging of Mammalian Cells and Xenograft Tumors with SNAP-Tag" PLoS ONE 7(3): e34003.
Bojkowska K. et al. (2011) "Measuring in vivo protein half-life." Chem. Biol. 18, 805-815.

Cell-Surface Protein Labeling and Internalization Analysis:

Bitsikas, V. et al. (2014) "Clathrin-independent pathways do not contribute significantly to endocytic flux" eLife 3, e03970.
Jaensch, N. et al. (2014) "Stable Cell Surface Expression of GPI-Anchored Proteins, but not Intracellular Transport, Depends on their Fatty Acid Structure" Traffic 15, 1305-1329.
Cole, N. B. and Donaldson, J. G. (2012) "Releasable SNAP-tag Probes for Studying Endocytosis and Recycling" ACS Chem. Biol. 7, 464-469.

Pulse-Chase Analysis:

Rošić, S. et al. (2014) "Repetitive centromeric satellite RNA is essential for kinetochore formation and cell division" J. Cell Biol. 207, 335-349.
Stoops, E. H. et al. (2014) "SNAP-Tag to Monitor Trafficking of Membrane Proteins in Polarized Epithelial Cells" Methods Mol. Biol. 1174, 171-182.
Bordor, D. L. et al. (2012) "Analysis of Protein Turnover by Quantitative SNAP-Based Pulse-Chase Imaging" Curr. Protoc. Cell Biol. 55, 8.8.1-8.8.34.

Pull-Down Studies:

Register, A. C. et al. (2014) "SH2-Catalytic Domain Linker Heterogeneity Influences Allosteric Coupling across the SFK Family" Biochemistry 53, 6910-6923.
Shi, G. et al. (2012) "SNAP-tag based proteomics approach for the study of the retrograde route" Traffic 13, 914-925.
Bieling, P. et al. (2010) "A minimal midzone protein module controls formation and length of antiparallel microtubule overlaps" Cell 142, 420-432.

Protein-Protein and Protein-Ligand Interactions:

Griss, R. et al. (2014) "Bioluminescent sensor proteins for point-of-care therapeutic drug monitoring" Nat. Chem. Biol. 10, 598-603.
Chidley, C. et al. (2011) "A yeast-based screen reveals that sulfasalazine inhibits tetrahydrobiopterin biosynthesis." Nat. Chem. Biol. 7, 375-383.
Gautier A. et al. (2009) "Selective Cross-Linking of Interacting Proteins using Self-Labeling Tags" J. Am. Chem. Soc. 131, 17954-17962.
Maurel D. et al. (2008) "Cell-surface protein-protein interaction analysis with time-resolved FRET and SNAP-tag technologies: application to GPCR oligomerization." Nat. Methods 5, 561-567.


  • Clone and express once, then use with a variety of substrates
  • Non-toxic to living cells
  • Wide selection of fluorescent substrates
  • Highly specific covalent labeling
  • Simultaneous dual labeling

Protein Labeling with SNAP-tag and CLIP-tag

The SNAP- (gold) or CLIP-tag (purple) is fused to the protein of interest (blue). Labeling occurs through covalent attachment to the tag, releasing either a guanine or a cytosine moiety.

SNAP-tag®, CLIP-tag™ and ACP/MCP-tag Substrate Selection Chart

NEB offers a large selection of fluorescent labels (substrates) for SNAP-, CLIP-, ACP- and MCP-tag fusion proteins.