Application Hero Banner

SNAP Surface

Membrane proteins are challenging to study given their hydrophobic nature, generally low native abundance and intrinsic instability (1,2). Regardless, half of all protein drug targets are membrane proteins. For imaging, most fluorescent proteins (i.e. GFP) cannot specifically visualize cell surface subpopulations.  

The SNAP-tag® system is based on a DNA repair enzyme, O6-alkylguanine-DNA alkyltransferase (AGT). It allows for multiple substrate options to enable color changes. It is highly temperature and fixation stable and can be used in vitro or in vivo. The substrate consists of two parts: the benzylguanine group and the functional group which can be a fluorophore, biotin or bead. During the labeling reaction the substituted benzyl group covalently attaches to the SNAP-tag releasing guanine. Once the fluorophore is coupled to the desired protein, the label fluorescesces permitting visualization in living or fixed cells.

SNAP-tag, CLIP-tag™ and cell surface-specific ACP/MCP-tag systems can specifically label subpopulations of target proteins expressed on the cell surface using non-cell permeable substrates (3). This approach permits discrimination of different populations of a cell surface protein: those properly translocated to the plasma membrane from those retained in the secretory pathway or already internalized (e.g. upon ligand binding).

SNAP-tag® is a registered trademark of New England Biolabs, Inc.
CLIP-tag™ is a trademark of New England Biolabs, Inc.

References

  1. Lacapère J-J, Pebay-Peyroula E, Neumann J-M, Etchebest C. (2007) Trends Biochem Sci. 32, 259–270. PMID: 17481903
  2. von Heijne G. (2007) J Intern Med. 261, 543–557. PMID: 17547710
  3. Keppler, A., Pick, H., Arrivoli, C. et al. (2004) Proc. Natl. Acad. Sci. USA, 101, 9955. PMID: 15226507

FAQs for SNAP Surface

Protocols for SNAP Surface

    Publications related to SNAP Surface

  1. Elena Shvets, Vassilis Bitsikas, Gillian Howard, Carsten Gram Hansen, Benjamin J Nichols 2015. Dynamic caveolae exclude bulk membrane proteins and are required for sorting of excess glycosphingolipids Nat Commun. 6, PubMedID: 25897946, DOI: 10.1038/ncomms7867.
  2. Margaret L Rodgers, Joshua Paulson, Aaron A Hoskins 2015. Rapid isolation and single-molecule analysis of ribonucleoproteins from cell lysate by SNAP-SiMPull RNA. 21(5), PubMedID: 25805862, DOI: 10.1261/rna.047845.114
  3. Meron Mengistu, Krishanu Ray, George K Lewis, Anthony L DeVico 2015. Antigenic properties of the human immunodeficiency virus envelope glycoprotein gp120 on virions bound to target cells PLoS Pathog. 11(3), PubMedID: 25807494, DOI: 10.1371/journal.ppat.1004772.
  4. Gabriele Fuchs, Alexey N Petrov, Caleb D Marceau, Lauren M Popov, Jin Chen, Sen E O'Leary, Richard Wang, Jan E Carette, Peter Sarnow, Joseph D Puglisi 2015. Kinetic pathway of 40S ribosomal subunit recruitment to hepatitis C virus internal ribosome entry site Proc Natl Acad Sci U S A. 112(2), PubMedID: 25516984, DOI: 10.1073/pnas.1421328111.
  5. Juri Nio Bach, Marc Bramkamp 2015. Dissecting the molecular properties of prokaryotic flotillins PLoS One. 10(1), PubMedID: 25635948, DOI: 10.1371/journal.pone.0116750.

Features

  • Clone and express once, then use with a variety of substrates
  • Non-toxic to living cells
  • Wide selection of fluorescent substrates
  • Highly specific covalent labeling
  • Simultaneous dual labeling

Applications

  • Simultaneous dual protein labeling on the surface of live cells
  • Protein localization and translocation
  • Pulse-chase experiments
  • Receptor internalization studies
  • Selective cell surface labeling
  • Protein pull-down assays
  • Protein detection in SDS-PAGE
  • Flow cytometry
  • High throughput binding assays in microtiter plates
  • Biosensor interaction experiments
  • FRET-based binding assays
  • Single molecule labeling
  • Super-resolution microscopy

Protein Labeling with SNAP-tag- and CLIP-tag

The SNAP- (gold) or CLIP-tag (purple) is fused to the protein of interest (blue). Labeling occurs through covalent attachment to the tag, releasing either a guanine or a cytosine moiety.

SNAP-tag®, CLIP-tag™ and ACP/MCP-tag Substrate Selection Chart

NEB offers a large selection of fluorescent labels (substrates) for SNAP-, CLIP-, ACP- and MCP-tag fusion proteins.

Legal Information

This product is covered by one or more patents, trademarks and/or copyrights owned or controlled by New England Biolabs, Inc (NEB).

While NEB develops and validates its products for various applications, the use of this product may require the buyer to obtain additional third party intellectual property rights for certain applications.

For more information about commercial rights, please contact NEB's Global Business Development team at gbd@neb.com.

This product is intended for research purposes only. This product is not intended to be used for therapeutic or diagnostic purposes in humans or animals.

  1. $name

    Fluorescent Labeling of COS-7 Expressing SNAP-tag Fusion Proteins for Live Cell Imaging

    Watch as Chris Provost, of New England Biolabs, performs fluorescent imaging of live COS-7 cells expressing SNAP-tag® fusion proteins.

  2. $name

    SNAP-tag Overview Tutorial

    View an interactive tutorial explaining the mechanism of our SNAP-tag® technologies and reagents available for researchers wishing to study the function and localization of proteins in live or fixed cells.