Strand Displacement Amplification & Nicking Enzyme Amplification Reaction

Strand displacement amplification (SDA) relies on a strand displacement DNA polymerase and a DNA nicking event targeted via primer design and a nicking endonuclease. The nicking site is regenerated with each polymerase displacement step for repeated cycles of nicking and extension, with the downstream strand displaced and free to anneal to primers in solution for amplification from the other end, resulting in exponential amplification. The nature of the SDA reaction produces discrete fragments of DNA that can easily be utilized in downstream workflows, though some fragments will vary by the presence/absence of the nicking site in the product.

Reaction Temperature Amplicon Size Detection Method(s)
 60°C  <100 nt Fluorescence

strand displacement amplification workflow

 

SDA utilizes two outer “bump” primers and two inner primers with 5’ tail regions that contain a nicking enzyme recognition site. In conjunction with a nicking enzyme (e.g., NtBstNBI), amplification of discrete DNA products occurs in rapid fashion.

DNA Strand Displacement

Early versions of SDA used Klenow (exo-) DNA polymerase and a nucleotide analog such as an α-thiol dCTP to prevent restriction enzyme cleavage of the amplified strand, thus generating a single stranded nick. The development of nicking enzymes such as Nt.BstNBI has enabled simpler versions of this method. When combined with a Bst polymerase, extremely rapid amplification can be achieved.

When designing SDA reactions, 4 primers are needed: two outer “bump” primers to provide the initial displacement of target sequence (generally a short <100 bp region), and two inner primers that include 5′ tail regions containing a nicking enzyme recognition site (e.g., Nt.BstNBI). It is generally useful to separate the nicking site from the target sequence by a 4-dA spacer as outlined in Ehses et al., which includes example primer tails.

Most PCR primer design software can be used to aid in SDA primer design. PrimerExplorer (typically for LAMP primer design) can also be used with modifications.* Reactions can be detected with real-time fluorescence using an intercalating dye or probe.

Nicking Enzyme Amplification Reaction

A similar amplification approach, the Nicking Enzyme Amplification Reaction (NEAR), powers point-of-care detection platforms that offer sample-to-answer results in minutes. This technique was originally described by Van Ness, J et al. and recently reviewed by Qain, C et al.


*When using LAMP primer design software, use the F3/B3 regions as Bump primers. For the tailed primers,  take only the F2/B2 sequences from the inner primers, and add SDA tails where the F1c/F2c would be.


Choose Type:

FAQs for Strand Displacement Amplification & Nicking Enzyme Amplification Reaction
Legal Information
This product is covered by one or more patents, trademarks and/or copyrights owned or controlled by New England Biolabs, Inc (NEB).

While NEB develops and validates its products for various applications, the use of this product may require the buyer to obtain additional third party intellectual property rights for certain applications.

For more information about commercial rights, please contact NEB's Global Business Development team at [email protected].

This product is intended for research purposes only. This product is not intended to be used for therapeutic or diagnostic purposes in humans or animals.