PT_Product_Hero

Phage Display

Phage display describes a selection technique in which a library of variants of a peptide or protein are expressed on the outside of phage virions, while the genetic material encoding each variant resides on the inside of the corresponding virion (1-3). This creates a physical linkage between each variant protein sequence and the DNA encoding it, which allows rapid partitioning based on binding affinity to a given target molecule (antibodies, enzymes, cell-surface receptors, etc.) by an in vitro selection process called panning (4). In its simplest form, panning is carried out by incubating a library of phage-displayed peptides with a plate (or bead) coated with the target, washing away the unbound phage, and eluting the specifically bound phage. The eluted phage is then amplified and taken through additional binding/ amplification cycles to enrich the pool in favor of binding sequences. After 3–4 rounds, individual clones are characterized by DNA sequencing and ELISA.

 

(1) Sidhu, S.S. et al. (2003) Chembiochem. 4, 14–25. PMID: 12512072
(2) Azzazy, H.M. and Highsmith, W.E. (2002) Clin. Biochem.35, 425–445. PMID: 12413604
(3) Parmley, S.F. and Smith, G.P. (1988) Gene 73, 305–318. PMID: 3149606
(4) Rodi, D.J. et al. (2002) Curr. Opin. Chem. Biol. 6, 92–96. PMID: 11827830

FAQs for Phage Display

Protocols for Phage Display

    Publications related to Phage Display

  1. Kanki, S. et al. 2011. Identification of targeting peptides for ischemic myocardium by in vivo phage display J. Mol. Cell. Cardiol. . , PubMedID: 21316369, DOI:
  2. Guo, C.P. et al. 2011. Potent Anti-Tumor Effect Generated by a Novel Human Papilllomavirus (HPV) Antagonist Peptide Reactivating the pRb/E2F Pathway PLoS One. , PubMedID: 21423621, DOI:
  3. Gonzalez, A.M. et al. 2011. Targeting choroid plexus epithelia and ventricular ependyma for drug delivery to the central nervous system BMC Neurosci. , PubMedID: 21214926, DOI:
  4. Kim, M. 2011. A peptide to dimerized translationally controlled tumor protein modulates allergic reactions J. Mol. Med.. , PubMedID: 21384150, DOI:
  5. Nguyen KT, Adamkiewicz MA, Hebert LE, Zygiel EM, Boyle HR, Martone CM, Meléndez-Ríos CB, Noren KA, Noren CJ, Hall MF 2014. Identification and characterization of mutant clones with enhanced propagation rates from phage-displayed peptide libraries Anal Biochem. 462C, PubMedID: 24952360, DOI: 10.1016/j.ab.2014.06.007
  6. Kaur K, Taneja NK, Dhingra S, Tyagi JS 2014. DevR (DosR) mimetic peptides impair transcriptional regulation and survival of Mycobacterium tuberculosis under hypoxia by inhibiting the autokinase activity of DevS sensor kinase BMC Microbiol. 14, PubMedID: 25048654, DOI: 10.1186/1471-2180-14-195
  7. Matsuo, A.L. et al. 2010. A novel melanoma-targeting peptide screened by phage display exhibits antitumor activity J. Mol. Med.. , PubMedID: 20802991, DOI:
  8. Li, Z.J. et. al. 2010. A novel peptide specifically targeting the vasculature of orthotopic colorectal cancer for imaging detection and drug delivery J. Control Release. 148, PubMedID: 20854857, DOI:
  9. Li, L. et al. 2010. Peptide ligands that use a novel binding site to target both TGF-β receptors Mol. Biosyst.. 6, PubMedID: 20890540, DOI:
  10. Liu, J. et al. 2010. Novel peptide-dendrimer conjugates as drug carriers for targeting nonsmall cell lung cancer Int. J. Nanomedicine. 6, PubMedID: 21289982, DOI:
  11. Larbanoix, L. et al. 2010. Potential amyloid plaque-specific peptides for the diagnosis of Alzheimer's disease Neurobiol. Aging.. 31, PubMedID: 19027991, DOI:
  12. Balian, G. et al. 2010. Peptides from phage display library modulate gene expression in mesenchymal cells and potentiate osteogenesis in unicortical bone defects Vis. Exp.. 46, PubMedID: 21178970, DOI:
  13. Cao, Q. et al. 2010. Phage display probes for imaging early response to bevacizumab treatment Amino Acids. , PubMedID: 20232090, DOI:
  14. Lu, S. et al. 2010. Targeting of embryonic stem cells by peptide-conjugated quantum dots PLoS One. 5, PubMedID: 20711469, DOI:
  15. Hairiri, G. et al. 2010. Radiation-guided drug delivery to mouse models of lung cancer Clin. Cancer Res.. 16, PubMedID: 20802016, DOI:
  16. Jung, E. et al. 2010. Artificial neural network study on organ-targeting peptides J. Comput. Aided. Mol. Des. . 24, PubMedID: 20020181, DOI:
  17. Liu, M. et al. 2010. D-peptide inhibitors of the p53-MDM2 interaction for targeted molecular therapy of malignant neoplasms Proc. Natl. Acad. Sci.. 107, PubMedID: 20660730, DOI:
  18. Mier, W. et al. 2007. Influence of chelate conjugation on a newly identified tumor-targeting peptide J. Nucl. Med.. 48, PubMedID: 17704241, DOI:
  19. Mai, J. et al. 2009. A synthetic peptide mediated actvie targeting of cisplatin liposomes to Tie2 expressing cells J. Control Release.. 139, PubMedID: 19576253, DOI:
  20. Kelly, K.A. et al. 2008. Targeted nanoparticles for imaging incipient pancreatic ductal adenocarcinoma PLoS Med.. 5, PubMedID: 18416599, DOI:

Applications

  • Epitope mapping
  • Identification of protein-protein contacts (1) and enzyme inhibitors (2)
  • Discovery of peptide ligands for GroEL (3), HIV (4-7), semiconductor surfaces (8) and small-molecule fluorophores (9) and drugs (10)
  • Bioactive receptor ligands have been identified both by panning against purified receptors (11-14) and against intact cells (15-18)
  • Peptides which target specific cell types have been isolated by in vitro panning and used for cell-specific gene delivery (19-22)
  • Ligands for mold spores (23) and bacterial cells (24) have also been identified using this system, including a peptide that specifically inhibits anthrax toxin, both in vitro and in vivo (25)
  • Tissue-specific peptides have been isolated by in vivo panning, in which phage is injected into a live animal, the relevant organs harvested and phage isolated from each tissue type (26,27)

References

  1. Berggard, T. et al. (2002) J. Biol. Chem. 277, 41954–41959. PMID: 12176979
  2. Chaudhary, J. et al. (2001) Am. J. Physiol. Cell Physiol. 280, C1027–1030. PMID: 11245619
  3. Chen, L. and Sigler, P.B. (1999) Cell 99, 757–768. PMID: 10619429
  4. Biorn, A.C. et al. (2004) Biochemistry 43, 1928–1938. PMID: 14967033
  5. Ferrer, M. and Harrison, S.C. (1999) J. Virol. 73, 5795–5802. PMID: 10364331
  6. Ferrer, M. et al. (1999) J. Pept. Res. 54, 32–42. PMID: 10448968
  7. BouHamdan, M. et al. (1998) J. Biol. Chem. 273, 8009–8016. PMID: 9525900
  8. Whaley, S.R. et al. (2000) Nature 405, 665–668. PMID: 10864319
  9. Rozinov, M.N. and Nolan, G.P. (1998) Chem. Biol. 5, 713–728. PMID: 9862799
  10. Rodi, D.J. et al. (1999) J. Mol. Biol. 285, 197–203. PMID: 9878399
  11. Kraft, S. et al. (1999) J. Biol. Chem. 274, 1979–1985. PMID: 9890954
  12. Koolpe, M. et al. (2002) J. Biol. Chem. 277, 46974–46979. PMID: 12351647
  13. Mummert, M.E. et al. (2000) J. Exp. Med. 192, 769–779. PMID: 10993908
  14. Hetian, L. et al. (2002) J. Biol. Chem. 277, 43137–43142. PMID: 12183450
  15. White, S.J. et al. (2001) Hypertension 37, 449–455. PMID: 11230317
  16. Binetruy-Tournaire, R. et al. (2000) EMBO J. 19, 1525–1533. PMID: 10747021
  17. Kragler, F. et al. (2000) EMBO J. 19, 2856–2868. PMID: 10856231
  18. Gazouli, M. et al. (2002) J. Pharmacol. Exp. Ther. 303, 627–632. PMID: 12388644
  19. Romanczuk, H. et al. (1999) Hum. Gene Ther. 10, 2615–2626. PMID: 10566889
  20. Nicklin, S.A. et al. (2000) Circulation 102, 231–237. PMID: 10889136
  21. Jost, P.J. et al. (2001) FEBS Lett. 489, 263–269. PMID: 11165262
  22. Rasmussen, U.B. et al. (2002) Cancer Gene Ther. 9, 606–612. PMID: 12082461
  23. Tinoco, L.W. et al. (2002) J. Biol. Chem. 277, 36351–36356. PMID: 12130641
  24. Stratmann, J. et al. (2002) J. Clin. Microbiol. 40, 4244–4250. PMID: 12409405
  25. Mourez, M. et al. (2001) Nat. Biotechnol. 19, 958–961. PMID: 11581662
  26. Lee, L. et al. (2002) Arthritis Rheum. 46, 2109–2120. PMID: 12209516
  27. Duerr, D.M. et al. (2004) J. Virol. Methods 116, 177–180. PMID: 14738985

Panning with a Phage Display Peptide Library

Legal Information

This product is covered by one or more patents, trademarks and/or copyrights owned or controlled by New England Biolabs, Inc (NEB).

While NEB develops and validates its products for various applications, the use of this product may require the buyer to obtain additional third party intellectual property rights for certain applications.

For more information about commercial rights, please contact NEB's Global Business Development team at gbd@neb.com.

This product is intended for research purposes only. This product is not intended to be used for therapeutic or diagnostic purposes in humans or animals.

  1. $name

    Peptides from Phage Display Library Modulate Gene Expression in Mesenchymal Cells and Potentiate Osteogenesis in Unicortical Bone Defects

    Isolating, by biopanning, the phage that binds to bone allows researchers to identify the peptide sequences that stimulate the differentiation of mesenchymal cells and potentiate bone repair.