Protein Analysis
  • My NEB
  • Print
  • PDF
  • Phage Display

    Phage display technology is an in vitro screening technique for identifying ligands for proteins and other macromolecules. At the crux of phage display technology is the ability to express peptide or protein sequences as fusions to the coat proteins of a bacteriophage. Libraries of phage-displayed peptides or proteins are thereby physically linked to their encoding nucleic acid, allowing selection of binding partners for myriad target types by iterative rounds of in vitro panning and amplification, followed by DNA sequencing. Libraries of over a billion members can be screened in a matter of days, offering an efficient alternative to more traditional methods of epitope mapping, receptor ligand identification, or protein evolution.

    • Peptides from Phage Display Library Modulate Gene Expression in Mesenchymal Cells and Potentiate Osteogenesis in Unicortical Bone Defects


      Isolating, by biopanning, the phage that binds to bone allows researchers to identify the peptide sequences that stimulate the differentiation of mesenchymal cells and potentiate bone repair.

      scroll to see additional videos

    Featured Products

    FAQs for Phage Display

      Publications related to Phage Display:

    1. Balian, G. et al. (2010) Peptides from phage display library modulate gene expression in mesenchymal cells and potentiate osteogenesis in unicortical bone defects Vis. Exp. 46, PubMedID: 21178970
    2. Cao, Q. et al. (2010) Phage display probes for imaging early response to bevacizumab treatment Amino Acids PubMedID: 20232090
    3. Gonzalez, A.M. et al. (2011) Targeting choroid plexus epithelia and ventricular ependyma for drug delivery to the central nervous system BMC Neurosci PubMedID: 21214926
    4. Cieslewicz, M. et al (2013) Targeted delivery of proapoptotic peptides to tumor-associated macrophages improves survival Proc. Natl. Acad. Sci. 110, 15919-24. PubMedID: 24046373, DOI: 10.1073/pnas.1312197110
    5. Lu, R.-M. et al (2013) Targeted drug delivery systems mediated by a novel peptide in breast cancer therapy and imaging PLoS One 8(6), e66128. PubMedID: 23776619, DOI: 10.1371/journal.pone.0066128
    6. Wu, C. and Tzertzinis, G. Selection of a mimotope peptide of S-adenosyl-l-homocysteine and its application in immunoassays Molecules 18, 13020-6.

    Applications

    • Epitope mapping
    • Identification of protein-protein contacts (1) and enzyme inhibitors (2)
    • Discovery of peptide ligands for GroEL (3), HIV (4-7), semiconductor surfaces (8) and small-molecule fluorophores (9) and drugs (10) 
    • Bioactive receptor ligands have been identified both by panning against purified receptors (11-14) and against intact cells (15-18) 
    • Peptides which target specific cell types have been isolated by in vitro panning and used for cell-specific gene delivery (19-22)
    • Ligands for mold spores (23) and bacterial cells (24) have also been identified using this system, including a peptide that specifically inhibits anthrax toxin, both in vitro and in vivo (25)
    • Tissue-specific peptides have been isolated by in vivo panning, in which phage is injected into a live animal, the relevant organs harvested and phage isolated from each tissue type (26,27)

    References

    1. Berggard, T. et al. (2002) J. Biol. Chem. 277, 41954–41959. PMID: 12176979
    2. Chaudhary, J. et al. (2001) Am. J. Physiol. Cell Physiol. 280, C1027–1030. PMID: 11245619
    3. Chen, L. and Sigler, P.B. (1999) Cell 99, 757–768. PMID: 10619429
    4. Biorn, A.C. et al. (2004) Biochemistry 43, 1928–1938. PMID: 14967033
    5. Ferrer, M. and Harrison, S.C. (1999) Ji. Virol. 73, 5795–5802. PMID: 10364331
    6. Ferrer, M. et al. (1999) J. Pept. Res. 54, 32–42. PMID: 10448968
    7. BouHamdan, M. et al. (1998) J. Biol. Chem. 273, 8009–8016. PMID: 9525900
    8. Whaley, S.R. et al. (2000) Nature 405, 665–668. PMID: 10864319
    9. Rozinov, M.N. and Nolan, G.P. (1998) Chem. Biol. 5, 713–728. PMID: 9862799
    10. Rodi, D.J. et al. (1999) J. Mol. Biol. 285, 197–203. PMID: 9878399
    11. Kraft, S. et al. (1999) J. Biol. Chem. 274, 1979–1985. PMID: 9890954
    12. Koolpe, M. et al. (2002) J. Biol. Chem. 277, 46974–46979. PMID: 12351647
    13. Mummert, M.E. et al. (2000) J. Exp. Med. 192, 769–779. PMID: 10993908
    14. Hetian, L. et al. (2002) J. Biol. Chem. 277, 43137–43142. PMID: 12183450
    15. White, S.J. et al. (2001) Hypertension 37, 449–455. PMID: 11230317
    16. Binetruy-Tournaire, R. et al. (2000) EMBO J. 19, 1525–1533. PMID: 10747021
    17. Kragler, F. et al. (2000) EMBO J. 19, 2856–2868. PMID: 10856231
    18. Gazouli, M. et al. (2002) J. Pharmacol. Exp. Ther. 303, 627–632. PMID: 12388644
    19. Romanczuk, H. et al. (1999) Hum. Gene Ther. 10, 2615–2626. PMID: 10566889
    20. Nicklin, S.A. et al. (2000) Circulation 102, 231–237. PMID: 10889136
    21. Jost, P.J. et al. (2001) FEBS Lett. 489, 263–269. PMID: 11165262
    22. Rasmussen, U.B. et al. (2002) Cancer Gene Ther. 9, 606–612. PMID: 12082461
    23. Tinoco, L.W. et al. (2002) J. Biol. Chem. 277, 36351–36356. PMID: 12130641
    24. Stratmann, J. et al. (2002) J. Clin. Microbiol. 40, 4244–4250. PMID: 12409405
    25. Mourez, M. et al. (2001) Nat. Biotechnol. 19, 958–961. PMID: 11581662
    26. Lee, L. et al. (2002) Arthritis Rheum. 46, 2109–2120. PMID: 12209516
    27. Duerr, D.M. et al. (2004) J. Virol. Methods 116, 177–180. PMID: 14738985

    Phage Display Overview

    Panning with a phage display peptide library.