Protein Analysis
  • My NEB
  • Print
  • PDF
  • Phage Display

    Phage display technology is an in vitro screening technique for identifying ligands for proteins and other macromolecules. At the crux of phage display technology is the ability to express peptide or protein sequences as fusions to the coat proteins of a bacteriophage. Libraries of phage-displayed peptides or proteins are thereby physically linked to their encoding nucleic acid, allowing selection of binding partners for myriad target types by iterative rounds of in vitro panning and amplification, followed by DNA sequencing. Libraries of over a billion members can be screened in a matter of days, offering an efficient alternative to more traditional methods of epitope mapping, receptor ligand identification, or protein evolution.

    1. Peptides from Phage Display Library Modulate Gene Expression in Mesenchymal Cells and Potentiate Osteogenesis in Unicortical Bone Defects

      Isolating, by biopanning, the phage that binds to bone allows researchers to identify the peptide sequences that stimulate the differentiation of mesenchymal cells and potentiate bone repair.

    Featured Products

    FAQs for Phage Display

    Protocols for Phage Display

      Publications related to Phage Display:

    1. Grin I, Hartmann MD, Sauer G, Hernandez Alvarez B, Schütz M, Wagner S, Madlung J, Macek B, Felipe-Lopez A, Hensel M, Lupas A, Linke D (2014)A trimeric lipoprotein assists in trimeric autotransporter biogenesis in enterobacteria J Biol Chem 289(11), 7388-98. PubMedID: 24369174, DOI: 10.1074/jbc.M113.513275
    2. Baumgartner J, Carillo MA, Eckes KM, Werner P, Faivre D. (2014)Biomimetic Magnetite Formation From Biocombinatorial Approaches to Mineralization Effects Langmuir 30(8), 2129-36. PubMedID: 24499323, DOI: 10.1021/la404290c
    3. Fatima A, Wang H, Kang K, Xia L, Wang Y, Ye W, Wang J, Wang X. (2014)Development of VHH Antibodies against Dengue Virus Type 2 NS1 and Comparison with Monoclonal Antibodies for Use in Immunological Diagnosis PLoS One 9(4), e95263. PubMedID: 24751715, DOI: 10.1371/journal.pone.0095263
    4. Kaur K, Taneja NK, Dhingra S, Tyagi JS (2014)DevR (DosR) mimetic peptides impair transcriptional regulation and survival of Mycobacterium tuberculosis under hypoxia by inhibiting the autokinase activity of DevS sensor kinase BMC Microbiol 14, 195. PubMedID: 25048654, DOI: 10.1186/1471-2180-14-195
    5. McGuire MJ, Gray BP, Li S, Cupka D, Byers LA, Wu L, Rezaie S, Liu YH, Pattisapu N, Issac J, Oyama T, Diao L, Heymach JV, Xie XJ, Minna JD, Brown KC (2014)Identification and Characterization of a Suite of Tumor Targeting Peptides for Non-Small Cell Lung Cancer Sci Rep 4, 4480. PubMedID: 24670678, DOI: 10.1038/srep04480
    6. Nguyen KT, Adamkiewicz MA, Hebert LE, Zygiel EM, Boyle HR, Martone CM, Meléndez-Ríos CB, Noren KA, Noren CJ, Hall MF (2014)Identification and characterization of mutant clones with enhanced propagation rates from phage-displayed peptide libraries Anal Biochem 462C, 35-43. PubMedID: 24952360, DOI: 10.1016/j.ab.2014.06.007
    7. Matochko WL, Cory Li S, Tang SK, Derda R (2014)Prospective identification of parasitic sequences in phage display screens Nucleic Acids Res 42(3), 1784-98. PubMedID: 24217917, DOI: 10.1093/nar/gkt1104
    8. Shires K, Shankland I, Mowla S, Njikan S, Jaymacker J, Novitzky N (2014)Serine and proline-rich ligands enriched via phage-display technology show preferential binding to BCR/ABL expressing cells Hematol Oncol Stem Cell Ther 7(1), 32-40. PubMedID: 24480037, DOI: 10.1016/j.hemonc.2014.01.001
    9. Maneewatch S, Adisakwattana P, Chaisri U, Saengjaruk P, Srimanote P, Thanongsaksrikul J, Sakolvaree Y, Poungpan P, Chaicumpa W (2014)Therapeutic epitopes of Leptospira LipL32 protein and their characteristics Protein Eng Des Sel 27(5), 135-44. PubMedID: 24760832, DOI: 10.1093/protein/gzu006
    10. Cieslewicz, M. et al (2013)Targeted delivery of proapoptotic peptides to tumor-associated macrophages improves survival Proc. Natl. Acad. Sci. 110, 15919-24. PubMedID: 24046373, DOI: 10.1073/pnas.1312197110
    11. Lu, R.-M. et al (2013)Targeted drug delivery systems mediated by a novel peptide in breast cancer therapy and imaging PLoS One 8(6), e66128. PubMedID: 23776619, DOI: 10.1371/journal.pone.0066128
    12. Gonzalez, A.M. et al. (2011)Targeting choroid plexus epithelia and ventricular ependyma for drug delivery to the central nervous system BMC Neurosci PubMedID: 21214926
    13. Balian, G. et al. (2010)Peptides from phage display library modulate gene expression in mesenchymal cells and potentiate osteogenesis in unicortical bone defects Vis. Exp. 46, PubMedID: 21178970
    14. Cao, Q. et al. (2010)Phage display probes for imaging early response to bevacizumab treatment Amino Acids PubMedID: 20232090

    Applications

    • Epitope mapping
    • Identification of protein-protein contacts (1) and enzyme inhibitors (2)
    • Discovery of peptide ligands for GroEL (3), HIV (4-7), semiconductor surfaces (8) and small-molecule fluorophores (9) and drugs (10) 
    • Bioactive receptor ligands have been identified both by panning against purified receptors (11-14) and against intact cells (15-18) 
    • Peptides which target specific cell types have been isolated by in vitro panning and used for cell-specific gene delivery (19-22)
    • Ligands for mold spores (23) and bacterial cells (24) have also been identified using this system, including a peptide that specifically inhibits anthrax toxin, both in vitro and in vivo (25)
    • Tissue-specific peptides have been isolated by in vivo panning, in which phage is injected into a live animal, the relevant organs harvested and phage isolated from each tissue type (26,27)

    References

    1. Berggard, T. et al. (2002) J. Biol. Chem. 277, 41954–41959. PMID: 12176979
    2. Chaudhary, J. et al. (2001) Am. J. Physiol. Cell Physiol. 280, C1027–1030. PMID: 11245619
    3. Chen, L. and Sigler, P.B. (1999) Cell 99, 757–768. PMID: 10619429
    4. Biorn, A.C. et al. (2004) Biochemistry 43, 1928–1938. PMID: 14967033
    5. Ferrer, M. and Harrison, S.C. (1999) Ji. Virol. 73, 5795–5802. PMID: 10364331
    6. Ferrer, M. et al. (1999) J. Pept. Res. 54, 32–42. PMID: 10448968
    7. BouHamdan, M. et al. (1998) J. Biol. Chem. 273, 8009–8016. PMID: 9525900
    8. Whaley, S.R. et al. (2000) Nature 405, 665–668. PMID: 10864319
    9. Rozinov, M.N. and Nolan, G.P. (1998) Chem. Biol. 5, 713–728. PMID: 9862799
    10. Rodi, D.J. et al. (1999) J. Mol. Biol. 285, 197–203. PMID: 9878399
    11. Kraft, S. et al. (1999) J. Biol. Chem. 274, 1979–1985. PMID: 9890954
    12. Koolpe, M. et al. (2002) J. Biol. Chem. 277, 46974–46979. PMID: 12351647
    13. Mummert, M.E. et al. (2000) J. Exp. Med. 192, 769–779. PMID: 10993908
    14. Hetian, L. et al. (2002) J. Biol. Chem. 277, 43137–43142. PMID: 12183450
    15. White, S.J. et al. (2001) Hypertension 37, 449–455. PMID: 11230317
    16. Binetruy-Tournaire, R. et al. (2000) EMBO J. 19, 1525–1533. PMID: 10747021
    17. Kragler, F. et al. (2000) EMBO J. 19, 2856–2868. PMID: 10856231
    18. Gazouli, M. et al. (2002) J. Pharmacol. Exp. Ther. 303, 627–632. PMID: 12388644
    19. Romanczuk, H. et al. (1999) Hum. Gene Ther. 10, 2615–2626. PMID: 10566889
    20. Nicklin, S.A. et al. (2000) Circulation 102, 231–237. PMID: 10889136
    21. Jost, P.J. et al. (2001) FEBS Lett. 489, 263–269. PMID: 11165262
    22. Rasmussen, U.B. et al. (2002) Cancer Gene Ther. 9, 606–612. PMID: 12082461
    23. Tinoco, L.W. et al. (2002) J. Biol. Chem. 277, 36351–36356. PMID: 12130641
    24. Stratmann, J. et al. (2002) J. Clin. Microbiol. 40, 4244–4250. PMID: 12409405
    25. Mourez, M. et al. (2001) Nat. Biotechnol. 19, 958–961. PMID: 11581662
    26. Lee, L. et al. (2002) Arthritis Rheum. 46, 2109–2120. PMID: 12209516
    27. Duerr, D.M. et al. (2004) J. Virol. Methods 116, 177–180. PMID: 14738985

    Phage Display Overview

    Panning with a phage display peptide library.