• My NEB
  • Print
  • PDF
  • Additional E. coli Strain Genotypes

    These E. coli strains are not supplied by New England Biolabs. Sources are listed in orange type.

    Strain Sources 

    A = ATCC (http://www.atcc.org), 

    CGSC = E. coli Genetic Stock Center (http://cgsc.biology.yale.edu), 

    LTI = Invitrogen Life Technologies, N = Novagen, S = Stratagene

    Strain (Source) Ref Genotype
    71-18 2 laclqΔ(lacZ)M15 proA+B+ /Δ(lac-proAB) thi glnV
    BHB2688 (A) 3 F recA λr (λEam 4 b2 red3 imm434 cIts Sam7)
    BHB2690 (A) 3 FompT gal [dcm] [lon] hsdSB (rB mB; an E. coli B strain) with DE3, a λ prophage carrying the T7 RNA polymerase gene
    BL21(DE3) (N) 17 BNN93 hflA150::Tn10 (TetR); The strain known as C600hfl is better known as BNN102
    BNN93 (A) 4, 5, 6 F e14 (McrA) hsdR (rK mK) glnV44 thr-1 leuB6 thi-1 lacY1 fhuA21 mcrB; Some isolates circulating as C600 are actually BNN93
    BNN102 (A) 4, 5, 6 BNN93 hflA150::Tn10 (TetR); The strain known as C600hfl is better known as BNN102
    C600 (CGSC) 4, 5, 6 F [e14 (McrA) or e14+ (McrA+)] thr-1 leuB6 thi-1 lacY1 glnV44 rfbD1 fhuA21; The original C600 is EcoK r+m+ McrBC+; See BNN93†
    C600hfl 4, 5, 6 BNN102 is sometimes called C600hfl
    CES200 (A, CGSC) 1 F thr-1 ara-14 Δ(gpt-proA)62 lacY1 tsx33glnV44galK2hisG4rfbD1rpsL31 (StrR) kdgD51 xyl-5 mtl-1 argE3 leuB6 hsdR (rK mK+) recB21 recC22 sbcB15 sbcC
    CSH18 9 Δ(lacZ)H125 proA+B+ /Δ(lac-pro)glnV thi
    DB1316 (A, CGSC) 1, 6 F recD1014 mcrB1 hsdR2 (rK mK+) zjj202::Tn10 (TetR)
    DH1 (LTI) 8 FglnV44 recA1 endA1 gyrA96 (NalR) thi1 hsdR17 ((rK mK+) relA1 spoT1? rfbD1?
    DH5αF´ (LTI) 6, 7 F´/endA1 hsdR17 (rK mK+) glnV44 thi-1 recA1 gyrA (NalR) relA1 Δ(lacIZYA-argF)U169 deoR (φ80dlacΔ(lacZ)M15)
    DL538 6, 10 NM621 sbcC201
    DP50 (A) 3 F fhuA53 dapD8 lacY1 glnV44 Δ(gal-uvrB)47 tyrT58 (=supF58) gyrA29 (NalR) Δ(thyA)57 hsdS3(rK– mK–)
    ED8654 (CGSC) 11 F e14 (McrA.) lac-3 or lacY1 galK2 galT22glnV44supF58metB1hsdR514 ((rK mK+) trpR55
    ED8767 (CGSC) 6, 11 F e14 (McrA.) lac-3 or lacY1 galK2 galT22 glnV44 supF58 metB1 mcrB1 hsdS3 (rK mK)
    GM48 (A) 12 F thr leu thi lacY galK galT ara fhuA tsx dam dcm glnV44
    GM2929 (CGSC) 12 F ara-14 leuB6 thi-1 fhuA31 lacY1 tsx-78 galK2galT22glnV44hisG4rpsL136 (StrR) xyl-5 mtl-1 dam13::Tn9 (CamR) dcm-6 mcrB1 hsdR2 ((rK mK+) mcrA recF143
    HB101 (A) 3, 13 FΔ(gpt-proA)62leuB6glnV44 ara-14 galK2 lacY1 Δ(mcrC-mrr) rpsL20 (StrR) xyl-5 mtl-1 recA13 thi-1
    JM83 (A) 2 F ara Δ(lac-proAB) rpsL (StrR)[φ80 dlacΔ(lacZ)M15] thi
    JM103 (A) 2 traD36 lacIqΔ(lacZ)M15 proA+B+/ endA1 glnV sbcBC thi-1 rpsL (StrR)Δ(lac-pro) (P1) (rK +mK + rP1 +mP1 +)
    JM105 (A) 2 traD36 lacIqΔ(lacZ)M15 proA+B+/thi rpsL (StrR) endA sbcB15 sbcC? hsdR4 (rK mK+) Δ(lac-proAB)
    JM110 (A) 2 traD36 lacIqΔ(lacZ)M15 proA+B+/rpsL (StrR) thr leu thi laY galK galT ara fhuA dam dcm glnV44 Δ(lac-proAB)
    K802 (A, CGSC) 3, 6, 8 See WA802
    K803 (A, CGSC) 3, 6, 8 See WA803
    LE392 (A, CGSC) 3 Fe14(McrA) hsdR514 (rKmK+) glnV44 supF58 lacY1 or Δ(lacIZY)6 galK2 galT22 metB1 trpR55
    MC1061 (A) 1, 7 F araD139 Δ(ara-leu)7696 galE15 galK16 Δ(lac)X74 rpsL (StrR) hsdR2 (rK mK+) mcrA mcrB1
    MC4100 (CGSC) 14 F araD139 Δ(argF-lac)U169 rpsL150 (StrR)relA1 flbB5301 deoC1 ptsF25 rbsR
    MM294 (A) 8 FendA1 hsdR17 (rK mK+) glnV44 thi-1 relA1? rfbD1? spoT1?
    NM477 5, 6 C600Δ(hsdMS-mcrB)5 (rK mK McrBC)
    NM554 5 MC1061 recA13
    NM621 10 F hsdR (rK mK+) mcrA mcrB glnV44 recD1009
    P2392 (S) 7 LE392(P2)
    Q358 (A) 7 F hsdR (rK mK+) glnV fhuA (φ80r)
    Q359 (A) 7 Q358 (P2 )
    RR1 (A) 3 HB101 recA+
    WA802 (A, CGSC) 3, 6, 8 F e14(McrA) lacY1 or Δ(lac)6 glnV44 galK2 galT22 rfbD1 metB1 mcrB1 hsdR2 (rK mK+)
    WA803 (A, CGSC) 3, 6, 8 Fe14(McrA) lacY1 or Δ(lac)6glnV44 galK2 galT22 rfbD1 metB1 mcrB1 hsdS3 (rK mK)
    χ1776 (A, CGSC) 3 F fhuA53 dapD8 minA1 glnV44 (=glnV44) Δ(gal-uvrB)40 minB2 rfb-2 gyrA25 (NalR) thyA142 oms-2metC65 oms-1 (tte-1) Δ(bioH-asd)29 cycB2 cycA1 hsdR2 (rK mK+) mcrB1?
    XL1-Blue (S) 15 ::Tn10 proA+B+ lacIq Δ(lacZ)M15/ recA1 endA1 gyrA96 (NalR) thi hsdR17 (rK mK+) glnV44 relA1 lac
    Y1088 (A) 4 FΔ(lac)U169 glnV supF hsdR (rK mK+) metB trpR fhuA21 proC::Tn5 (pMC9; TetR AmpR) NOTE: pMC9 is pBR322 with lacIq inserted
    Y1089† (S) 4, 16 F Δ(lac)U169 lon-100 araD139 strA hflA150::Tn10 (pMC9; TetR AmpR)
    Y1090†† (S) 4, 16 F Δ(lac)U169 lon-100 araD139 rpsL(StrR) supF mcrA trpC22::Tn10 (pMC9; TetR AmpR)

    † C600 lines obtained from different sources give different results. The original strain and that obtained from the E. coli Genetic Stock Center (Yale University) are McrA+; derivatives traceable to the Brenner laboratory are McrA (18).

    †† No isolates of these strains tested showed pleiotropic phenotypes attributed to lon (i.e. were not mucoid, formed turbid λ plaques, grew well on rich media

    The designation R(...) means Rearrangement by analogy with IN(...) for INversion (19). Thus, "R(xxx::Tn10--TetS)" signifies the former presence of a Tn10 insertion. For insertions of wild-type Tn10, the rearrangement was presumably Tn10 promoted, since 99% of TetS derivatives of Tn10-containing strains have acquired transposon-promoted rearrangements (20, 21, 22) that spare one or both IS10 elements.

    References

    1. Wertman, K.F. et al. (1986) Gene, 49, 253–262. PMID: 2952553
    2. Yanisch–Perron, C., Viera, J. and Messing, J. (1985) Gene, 33, 103–119. PMID: 2985470
    3. Sambrook, J., Fritsch, E.F. and Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual, (2nd ed.). Cold Spring Harbor: Cold Spring Harbor Laboratory Press.
    4. Huynh,T.V. et al. (1985). In D.M. Glover (Ed.), DNA Cloning, Vol. 1,(pp. 56–110). Oxford, England: IRL Press Limited. 
    5. Raleigh, E.A. et al. (1988) Nucl. Acids Res., 16, 1563–1575. PMID: 2831502
    6. Woodcock, D.M. et al. (1989) Nucl. Acids Res., 17, 3469–3478. PMID: 2657660
    7. Raleigh, E.A., Lech, K. and Brent, R. (1989). In F.M. Ausebel et al. (Eds.), Current Protocols in Molecular Biology, (p. 1.4). New York: Publishing Associates and Wiley Interscience. 
    8. Berlyn, M.K.B. (1996). In F.C. Niedhardt et al. (Ed.), Escherichia coli and Salmonella: cellular and molecular biology, (2nd ed.), Vol. 2, (pp. 1715– 1902). ASM Press. 
    9. Miller, J.H. (1972). Experiments in Molecular Genetics., Cold Spring Harbor: Cold Spring Harbor Laboratory Press. 
    10. Whittaker, P.A. et al. (1989) Nucl. Acids Res., 16, 6725–6736. 
    11. Murray, N.E. et al. (1977) Mol. Gen. Genet., 150, 53–61. PMID: 319344
    12. Palmer, B.R. and Marinus, M.G. (1994) Gene, 143, 1–12. PMID: 8200522
    13. Boyer, H.W, and Roulland–Dussoix, D. (1969) J. Mol. Biol., 41, 459. PMID: 4896022
    14. Silhavy, T.J. et al. (1984) Experiments with Gene Fusions, (pp. xi–xii) Cold Spring Harbor: Cold Spring Harbor Laboratory. 
    15. Bullock, W.O. et al. (1987) BioTechniques, 5, 376–378.
    16. Maurizi, M.R. et al. (1985) J. Bacteriol., 164, 1124–1135. PMID: 2999072
    17. Studier, F.W. et al. (1990). In D.V. Goeddel (Ed.), Methods in Enzymology, Vol. 185, (pp. 60–89). San Diego: Academic Press.
    18. Alber, J., personal communication.
    19. Hill, C. W. and B. W. Harnish. (1981) Proc Natl Acad Sci USA, 78, 7069-72. PMID: 6273909
    20. Kleckner, N., K. Reichardt and D. Botstein. (1979), J. Mol. Biol. 127, 89-115. PMID: 370414
    21. Raleigh, E. A. and N. Kleckner. (1984) J. Mol. Biol. 173, 437-61. PMID: 6323719
    22. Simons, R. W., F. Houman and N. Kleckner. (1987) Gene, 53, 85-9. PMID: 3596251