New England Biolabs
  • My NEB
  • Print
  • PDF
  • DNA Polymerase Selection Chart

    The following table lists properties that should be considered when choosing a polymerase. Since these properties can depend on reaction conditions, the primary references should be consulted prior to use in a given application.

      5′–>3′ Exonuclease 3′–>5′ Exonuclease Error Rate(x10-6)a Strand Displacement Nick Translation Thermal Stability Km dNTPs Km DNAd Extend RNA Primer Extension from Nick Primary
    Applications
    Bst DNA Polymerase,
    Full Length
    +   _r + +     + + Labeling, 2nd Strand
    Synthesis, Strand Displacement
    Bst DNA Polymerase,
    Large Fragment

      ++++ +     + + Strand Displacement Applications
    Bsu DNA Polymerase,
    Large Fragment
      ++     + + Labeling, 2nd Strand Synthesis, Strand Displacement
    Crimson Taq
    DNA Polymerase
    + 285 _r + ++     + PCR (routine)
    Deep VentR
    DNA Polymerase
    +++   ++ ++++ 50 µMe 0.01 nMe + PCR (high-fidelity)
    Deep VentR (exo–)
    DNA Polymerase
      +++ ++++     + PCR (long)
    E. coli DNA
    Polymerase I
    + ++ 9h _r + 1-2 µMf 5 nMf + + Nick Translation
    Klenow Fragment (3′→5′ exo-) 100o +++     + + Labeling
    DNA Polymerase I,
    Large (Klenow) Fragment
    ++ 18o ++ 2 µMg   + + Polishing Ends
    LongAmp® Taq DNA
    Polymerase
    + ++ ~140 _r + ++     + PCR (routine, long)
    LongAmp® Hot Start Taq
    DNA Polymerase
    + ++ ~140 _r + ++     + PCR (hot start, long)
    M-MuLV Reverse
    Transcriptase
      +++ 18 µMs       cDNA Synthesis
    OneTaq®
    DNA Polymerase
    + ++ ~140
    _r + ++     + PCR (routine, difficult)
    OneTaq® Hot Start
    DNA Polymerase
    + ++ ~140
    _r + ++     + PCR (hot start, routine, difficult)
    phi29 DNA Polymerase ++++   +++++ 0.5 µMq   + + Strand Displacement
    Applications
    Phusion® Hot Start
    Flex DNA Polymerase*
    ++++ <0.44 +++     PCR (high-fidelity, long)
    Phusion® High-Fidelity
    DNA Polymerase*
    ++++ <0.44 +++     PCR (high-fidelity, long, hot start)
    Q5® + Q5® Hot Start DNA Polymerase ++++ <0.44 +++    
    PCR (high-fidelity)
    Sulfolobus DNA
    Polymerase IV
      +         DNA Synthesis Across
    Template Lesions
    T4 DNA Polymerase ++++ <1h 2 µMn   + Polishing Ends,
    2nd Strand Synthesis
    T7 DNA Polymerase
    (unmodified)
    ++++ 15b 18 µMk 18 nMk + Site Directed Mutagenesis
    Taq DNA Polymerase
    with Standard Taq Buffer
    + 285c _r + ++ 13 µMe 2 nMe + PCR (routine)
    Therminator™ DNA
    Polymerase
      + ++++     + + Chain Terminator
    Applications
    VentR® DNA
    Polymerase
    ++ 57b ++e +++ 60 µMe 0.1 nMe + PCR (routine, high-fidelity)
    VentR® (exo–)
    DNA Polymerase
    190b +++e +++ 40 µMe 0.1 nMe + PCR, Sequencing

    Deep VentR™ and Therminator™ are trademarks of New England Biolabs, Inc.
    Q5®, LongAmp®, OneTaq®, VentR® are registered trademarks of New England Biolabs, Inc.

    * Notice to Customers:
    Phusion® DNA Polymerase was developed by Finnzymes Oy, now a part of Thermo Fisher Scientific. This product is manufactured by New England Biolabs, Inc. under agreement with, and under the performance specifications of Thermo Fisher Scientific.
    Phusion® is registered trademark and property of Thermo Fisher Scientific.

    References:

    1. Measured by the opal reversion assay of Kunkel et al. [(1987) Proc. Natl. Acad. Sci. USA, 84, 4865–4869 PMID: 3474631] which reflects the error rate for a single round of gap-filling DNA synthesis. Several alternative assays are also available, although comparing error frequencies among these assays is complicated because they measure different aspects of error introduction. 
    2. Mattila, P., Korpela, J., Tenkanen, T. and Pitkanen, K. (1991) Nucleic Acids Res., 19, 4967–4973. PMID: 8420970
    3. Tindall, K.R. and Kunkel, T.A. (1988) Biochemistry, 27, 6008–6013. PMID: 2847780
    4. Km values for DNA are expressed in terms of moles of primer-template complexes. 
    5. Kong, H.M., Kucera, R.B. and Jack, W.E., (1993) J. Biol. Chem., 268, 1965–1975. PMID: 8420970
    6. McClure, W.R. and Jovin, T.M. (1975) J. Biol. Chem., 250, 4073–4080. PMID: 1092683
    7. Polesky, A.H., Steitz, T.A., Grindley, N.D.F. and Joyce, C.M. (1990) J. Biol. Chem., 265, 14579–14591. PIMD: 2201688
    8. Kunkel, T.A., Loeb, L.A. and Goodman, M.F. (1984) J. Biol. Chem., 259, 1539–1545 PIMD: 6229537
    1. Patel, S.S., Wong, E. and Johnson, K.A. (1991) Biochemistry, 30, 511–525. PIMD: 1846298
    1. Gillin, F.D. and Nossal, N.G. (1975) Biochem. Biophys. Res. Commun., 64, 457–464. PIMD: 1170851
    2. Bebenek, K., Joyce, C.M., Fitzgerald, M.P. and Kunkel, T.A. (1990) J. Biol. Chem., 265, 13878–13887. PIMD: 2199444
    3. Southworth, M.W. et al. (1996) Proc. Natl. Acad. Sci. USA, 93, 5281–5285. PIMD: 8643567
    4. Saturno, J., Blanco, L., Salas, M. and Esteban, J.A. (1995) J. Biol. Chem., 270, 31235–31243. PIMD: 8537389
    5. Destroys displaced strand. 
    6. Ricchetti, M. and Buc, H. (1990) EMBO J. 9, 1583-1593. PIMD: 1691709