• My NEB
  • Print
  • PDF
  • Protein Labeling

    SNAP- and CLIP-tag™ protein labeling systems enable the specific, covalent attachment of virtually any molecule to a protein of interest. There are two steps to using this system: cloning and expression of the protein of interest as a SNAP-tag® fusion, and labeling of the fusion with the SNAP-tag substrate of choice. The SNAP-tag is a small protein based on human O6-alkylguanine-DNA-alkyltransferase (hAGT), a DNA repair protein. SNAP-tag substrates are dyes, fluorophores, biotin, or beads conjugated to guanine or chloropyrimidine leaving groups via a benzyl linker. In the labeling reaction, the substituted benzyl group of the substrate is covalently attached to the SNAP-tag. CLIP-tag is a modified version of SNAP-tag, engineered to react with benzylcytosine rather than benzylguanine derivatives. When used in conjunction with SNAP-tag, CLIP-tag enables the orthogonal and complementary labeling of two proteins simultaneously in the same cells. 

    CLIP-tag™ is a trademark of New England Biolabs, Inc.
    SNAP-tag® is a registered trademark of New England Biolabs, Inc.
    • Fluorescent Labeling of COS-7 Expressing SNAP-tag® Fusion Proteins for Live Cell Imaging

      Watch as Chris Provost, of New England Biolabs, performs fluorescent imaging of live COS-7 cells expressing SNAP-tag® fusion proteins.

      scroll to see additional videos
    • SNAP-tag® Overview Tutorial

      View an interactive tutorial explaining the mechanism of our SNAP-tag® technologies and reagents available for researchers wishing to study the function and localization of proteins in live or fixed cells.

      scroll to see additional videos

    Featured Products

    Features

    • Clone and express once, then use with a variety of substrates
    • Non-toxic to living cells
    • Wide selection of fluorescent substrates
    • Highly specific covalent labeling
    • Simultaneous dual labeling

    Applications

    • Simultaneous dual protein labeling inside live cells
    • Protein localization and translocation
    • Pulse-chase experiments
    • Receptor internalization studies
    • Selective cell surface labeling
    • Protein pull-down assays
    • Protein detection in SDS-PAGE
    • Flow cytometry
    • High throughput binding assays in microtiter plates
    • Biosensor interaction experiments
    • FRET-based binding assays
    • Single molecule labeling
    • Super-resolution microscopy

    Protein Labeling with SNAP-tag and CLIP-tag

    The SNAP- (gold) or CLIP-tag (purple) is fused to the protein of interest (blue). Labeling occurs through covalent attachment to the tag, releasing either a guanine or a cytosine moiety.

    Protein Labeling with ACP-tag

    ACP-tag (red) fused to the protein of interest (blue) is labeled in the presence of a required synthase.