• My NEB
  • Print
  • PDF
  • Epigenetics

    Methyltransferases

    DNA methyltransferases are enzymes that modify DNA by adding a methyl group to either cytosines or adenines depending on the specificity of the enzyme. DNA methyltransferases can be used experimentally to methylate DNA at specific sites for gene expression studies. Our selection includes CpG methyltransferase (NEB #M0226), which is especially useful for studying CpG methylation effects. These enzymes are also useful for producing positive controls for methylation-specific PCR or bisulfite sequencing.

    Several protein methyltransferases (G9A (NEB #M0235), SET7 (NEB #M0233), PRMT1 (NEB #M0234)) are also available for the methylation of specific lysine and arginine residues in Histone H3 and H4 in gene regulation studies.

    • What Is Epigenetics?

      If all cells are created from the same genetic material, why are there so many different cell types? Listen to Sriharsa Pradhan, Senior Scientist, RNA Biology at NEB, as he describes how DNA is methylated and how this affects the path of reading the DNA code the same way an obstruction would derail a train off its tracks.

      scroll to see additional videos

    Applications

    • Positive controls for methylation specific PCR or bisulfite sequencing
    • CpG-methylated gene expression studies
    • Nucleosome footprinting

    Types of Histone Modifications

    Amino Acid Modification
    Lysine Methylation, Acetylation,
    Ubiquitination, Sumoylation,
    ADP-Ribosylation
    Arginine Methylation
    Serine Phosphorylation
    Threonine Phosphorylation

    Types of DNA Modifications

    References

    1. Kim, J.K., Samaranayake, M. and Pradhan S. (2009) Cell. Mol. Life Sci. 66, 596-612. PMID: 18985277
    2. Vanyushin, B.F. (2006) Curr. Top. Microbiol. Immunol. 301, 67-122. PMID: 16570846
    3. Mosher, R.A., Melnyk, C.W. (2010) Trends Plant Sci. 15, 204-210. PMID: 20129810
    4. Lyko, F., Beisel, C., Marhold, J., Paro, R. (2006) Curr. Top. Microbiol. Immunol. 310, 23-44. PMID: 16909905
    5. Selker, E.U., Freitag, M., Kothe, G.O., et al. (2002) Proc. Natl. Acad. Sci. U S A. 99, Suppl 4, 16485-16490. PMID: 12189210
    6. Kriaucionis, S. and Heintz, N. (2009) Science 324, 929-930. PMID: 19372393
    7. Tahiliani, M., Koh, K. P., Shen, Y., et al. (2009) Science 324, 930-935. PMID: 19372391
    8. Ehrlich, M., Wilson, G.G., Kuo, K.C., And Gehrke, C.W. (1987) J. Bacteriol. 169, 939-943. PMID: 3029036
    9. Svadbina, I.V., Zelinskaya, N.V., Kovalevskaya, N.P., Zheleznaya, L.A. and Matvienko, N.I. (2004) Biochem. (Moscow) 69, 299-305. PMID: 15061697
    10. Ratel, D., Ravanat, J-L., Berger, F. and Wion D. (2006) Bioessays 28, 309-315. PMID: 16479578
    11. Marinus, M.G. and Casadesus, J. (2009) FEMS Microbiol. Rev. 33, 488-503. PMID: 19175412