SNAP-tag® Substrates

Cellular Analysis

NEB offers a large selection of fluorescent labels (substrates) for SNAP-fusion proteins. SNAP-tag® substrates consist of a fluorophore conjugated to guanine or chloropyrimidine leaving groups via a benzyl linker. Substrates label the SNAP-tag® without the need for additional enzymes. Cell-permeable substrates (SNAP-Cell®) are suitable for both intracellular and cell-surface labeling, whereas non-cell-permeable substrates (SNAP-Surface®) are specific for fusion proteins expressed on the cell surface only.

SNAP-tag®, SNAP-Cell® and SNAP-Surface® are registered trademarks of New England Biolabs, Inc.

  1. Fluorescent Labeling of COS-7 Expressing SNAP-tag Fusion Proteins for Live Cell Imaging

    Watch as Chris Provost, of New England Biolabs, performs fluorescent imaging of live COS-7 cells expressing SNAP-tag® fusion proteins.

  2. SNAP-tag Overview Tutorial

    View an interactive tutorial explaining the mechanism of our SNAP-tag® technologies and reagents available for researchers wishing to study the function and localization of proteins in live or fixed cells.

Featured Products

    Publications related to SNAP-tag Substrates:

  1. Zelman-Femiak, M. et al. (2010). Covalent quantum dot receptor linkage via the acyl carrier protein for single-molecule tracking, internalization, and trafficking studies BioTechniques . 49, 2. PubMedID: 20701592
  2. Waichman S. et al. (2010). Functional Immobilization and Patterning of Proteins by an Enzymatic Transfer Reaction Anal. Chem. . 82, 1478-1485. PubMedID: 20092261
  3. Mosiewicz, K. A. et al. (2010). Phosphopantetheinyl Transferase-Catalyzed Formation of Bioactive Hydrogels for Tissue Engineering J. Am. Chem. Soc. . 132, 5972-5974. PubMedID: 20373804
  4. Neugart F. et al. (2009). Detection of ligand-induced CNTF receptor dimers in living cells by fluorescence cross correlation spectroscopy Biochim. Biophys. Acta.  . 1788, 1890-1900. PubMedID: 19482006
  5. Eggeling C. et al. (2009). Direct observation of the nanoscale dynamics of membrane lipids in a living cell Nature . 457, 1159-1163. PubMedID: 19098897
  6. Gralle M. et al. (2009). Neuroprotective secreted amyloid precursor protein acts by disrupting amyloid precursor protein dimers J. Biol. Chem. . 284, 15016-15025. PubMedID: 19336403
  7. Generosi J. et al. (2008). AMPA receptor imaging by infrared scanning near-field optical microscopy Physica Status Solidi C: Current Topics in Solid State Physics . 5, 2641-2644.
  8. Sunbul M. et al. (2008). Enzyme catalyzed site-specific protein labeling and cell imaging with quantum dots Chem. Comm. . 5927-5929. PubMedID: 19030541
  9. Generosi J. et al. (2008). Photobleaching-free infrared near-field microscopy localizes molecules in neurons J. App. Phys. . 104, 106102-1/3.
  10. Kropf M. et al. (2008). Subunit-specific surface mobility of differentially labeled AMPA receptor subunits Eur. J. Cell Biol. . 87, 763-778. PubMedID: 18547676
  11. Zhou Z. et al. (2007). Genetically encoded short peptide tags for orthogonal protein labeling by Sfp and AcpS phosphopantetheinyl transferases ACS Chemical Biology . 2, 337-346. PubMedID: 17465518
  12. Liu E and Bruner S. D. (2007). Rational manipulation of carrier-domain geometry in nonribosomal peptide synthetases ChemBioChem. . 8, 617 - 621. PubMedID: 17335097
  13. Meyer B.H. et al. (2006). Covalent labeling of cell-surface proteins for in vivo FRET studies FEBS Letters . 580, 1654-1658. PubMedID: 16497304
  14. Meyer B.H. et al. (2006). FRET imaging reveals that functional neurokinin-1 receptors are monomeric and reside in membrane microdomains of live cells Proc. Natl. Acad. Sci. USA . 103, 2138-43. PubMedID: 16461466
  15. Prummer M. et al. (2006). Post-translational covalent labeling reveals heterogeneous mobility of individual G protein-coupled receptors in living cells ChemBioChem . 7, 908-911. PubMedID: 16607667
  16. Jacquier V. et al. (2006). Visualizing receptor trafficking in living PNAS . 103, 14325-14330. PubMedID: 16980412
  17. Yin J. et al. (2005). Labeling proteins with small molecules by site-specific posttranslational modification J Am Chem Soc. 126, 7754-7755. PubMedID: 15212504
  18. Cravatt B.F. (2005). Live chemical reports from the cell surface Chem. Biol. . 12, 954-956. PubMedID: 16183017
  19. Vivero-Pol L. et al. (2005). Multicolor imaging of cell surface proteins J. Am. Chem. Soc. . 127, 12770-12771. PubMedID: 16159249
  20. Yin J. et al. (2005). Single-cell FRET imaging of transferrin receptor trafficking dynamics by Sfp-catalyzed, site-specific protein labeling Chem. Biol . 12, 999-1006. PubMedID: 16183024
  21. La Clair, J.J. et al. (2004). Manipulation of carrier proteins in antibiotic biosynthesis Chem. Biol. . 11, 195-201. PubMedID: 15123281
  22. George N. et al. (2004). Specific labeling of cell surface proteins with chemically diverse compounds J .Am. Chem. Soc.  . 126, 8896-8897. PubMedID: 15264811