

Genome filtering identifies species-specific DNA biomarkers for *Mansonella perstans* and *Mansonella ozzardi* which enable differentiation of these closely related species and other co-endemic filarial parasites

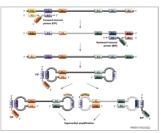

C. B. Poole¹, A. Sinha¹, L. Ettwiller¹, L. Apone¹, K. McKay¹, V. Panchapakesa¹, N. F. Lima², M. U. Ferreira², S. Wanji³ and C. K. S. Carlow¹

¹New England Biolabs, Ipswich, MA, USA. ² University of São Paolo, Brazil. ³ University of Buea, Cameroon.

Introduction to Mansonelliasis

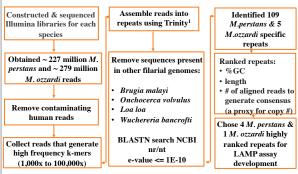
- Caused by 3 parasites: Mansonella perstans, M. ozzardi & M. streptocerca.
- Primary Insect Vector: Culicoides (biting midges).
- M. ozzardi also spread by Simulium (black flies).
- No distinct, specific clinical consequences for Mansonella infections.
 - Immunosuppression caused by parasitic infection may lead to worsening of other medical conditions.
- ➤ Anti-helminthic treatment is complicated:
- Not all species respond to ivermectin.
- · Benzimidazoles & DEC often employed.
- Mansonella patients are often co-infected with multiple filarial parasites including Onchocerca volvulus, Wuchereria bancrofti, and Loa loa.
- Need improved diagnostic tools.

Regions where Mansonelliasis is Endemic

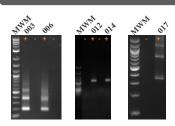


Grey shading represents regions endemic for Mansonelliasis

- Origin of parasite sample
- Region co-endemic for M. perstans & M. streptocerca


Loop-Mediated Isothermal Amplification (LAMP) is Ideal for Field Use

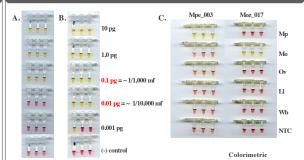
- Set of 4 primers (F3, FIP, B3 & BIP) recognize 6 distinct sequences on target DNA. Optional Loop
- primers speed up amplification.


 Single step isothermal reaction
 requiring a simple water bath.
- Highly sensitive and specific.
 Requires strand displacing polymerase (Bst).
- > Rapid (~30-60 min) compared to PCR.
- Multiple direct methods for easy visualization of results.

Bioinformatic Pipeline Identifies New Diagnostic Biomarkers for *M. perstans* and *M. ozzardi*

Grabherr et. al. (2011) Nature Biotechnology 29:644-654

Validation of Bioinformatically Identified Repeats by PCR


PCR of candidate biomarkers from M. perstans (003, 006, 012 and 014) or M. ozzardi (017) DNA. Ladder-like arrays (003, 006 and 017) suggest repeats are organized tandemly in the genome whereas single bands (012, 014) suggest a dispersed organization. += DNA; -= Non-template control; MWM = molecular weight marker.

Candidate Biomarker Evaluation: Repeat Characteristics and LAMP Assay Results

					² Colorimetric LAMP		
Target			Consensus sequence length (bps)		Optimal conditions	Sensitivity (pg)	
					63℃,	0.1	
Mpe_003	80, 315	33	366	tandem	60 min		Yes
					63℃,		
Mpe_006	111, 796	31	579	tandem	60 min	0.1	Yes
					63℃,		
Mpe_012	21,974	29	338	dispersed	60 min	1000	Yes
					61°C,		
Mpe_014	13, 223	29	318	dispersed	60 min	10	Yes
					63℃,		
Moz_017	10,000	42	303	tandem	20 min	0.01	Yes

 $^1\#$ reads aligned to form the consensus sequence is used as a proxy for copy number. 2 Multiple LAMP primer sets were designed for each target. The results generated by the best primer set are presented.

The Mansonella LAMP Assays are Sensitive and Specific

The primer set targeting Mpe_003 detects as little as 0.1 pg M. perstans DNA (A) whereas the primer set targeting Moz_017 can detect as little as 0.01 pg of M. ozzardi DNA (B). The Mpe_003 and Moz_017 LAMP primer sets are specific for M. perstans (Mp) and M. ozzardi (Mo) DNA respectively. They do not cross react with DNA from the non-specific Mansonella species or with O. volvulus (Ov), L. loa (L1) or W. benzerfoit (Wh) DNA (C).

Validation on Patient and Insect Samples

Table 1. Detection of *M. perstans* in experimentally infected *C. milnei*. Comparison of the performance of ITS1 nested-PCR and colorimetric Mpe_003 LAMP.

C. milnei Infection Status	Sample Size	Mansonella Nested-PCR Positive	M. perstans LAMP Positive
FED ON VOLUNTEER: potentially infected	36	14	10
UNFED:	36	1	0

Table 2. Detection of *M. perstans* in patient samples. Comparison of the performance of microscopy, ITS1 nested-PCR and colorimetric Mpe_003 LAMP.

per ror manice or macroscopy	, 1101 moneta 1 circuma conormicana (Apr_oso 1211/11)			
Patient Infection Status a	Sample Size	Mansonella Nested- PCR Positive	M. perstans LAMI Positive	
Mf POSITIVE	9	9	9	
Mf NEGATIVE	1	1	1	

As determined by microscopic examination of patient samples.

Table 3. Detection of *M. ozzardi* in patient samples. Comparison of the performance of microscopy/TTS-2 qPCR, ITS1 nested-PCR and Moz_017 LAMP.

Patient Infection Status ^b	Sample Size	Mansonella Nested- PCR Positive	M. ozzardi LAMP Positive	
Mf / qPCR POSITIVE	51	Not Evaluated	51	
Mf / qPCR NEGATIVE	33	8	8	

^b As determined by microscopy and ITS-2 qPCR (Lima et. al. (2018) PLOS NTD 12:e0006327)

Summary

- Using a bioinformatic filtering approach, new diagnostic biomarkers for M. perstans and M. ozzardi were identified
- Developed sensitive and species-specific LAMP assays targeting these new biomarkers.
- Validated these new LAMP assays on both patient and insect samples.
- These new field deployable assays will assist with the effort to better understand the global burden of Mansonelliasis.