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Mycobacterium species, and the phages that prey upon them, are found ubiquitously in the environment. Outside of the causative agent of tuberculosis, most Mycobacterium species are
harmless to humans while a subset can cause opportunistic infections, colonizing medical equipment and infecting immune compromised patients. There is interest in the study and engineering
of Mycobacterial phages as tools for studying the biology of these organisms, and potentially as therapeutics targeting recalcitrant Nontuberculosis Mycobacteria (NTM) infections. Mycobacteria
and Mycobacterial phages are also notable for their high GC genomes, typically between 65-70% overall genomic GC content which can make amplification, sequencing, and especially de novo
synthesis of the DNA of these organisms challenging creating difficulties in the generation of recombinant phages with defined genomic changes.

Here we report the generation of fully synthetic engineering systems for the Mycobacterial phages BPs (41,901bp, 66.6% GC), Antsirabe (44,739bp, 69.0% GC), and Bxb1 (50,550bp, 63.6%
GC). The genomes were domesticated of Type IIS sites (BPs: 18 sites, Antsirabe: 2 sites, Bxb1: 49 sites), divided into twelve or twenty-four parts, synthesized, and assembled into clonal
fragments in E. coli vectors. The fragments could then be assembled into complete a phage genome in a single Golden Gate reaction step and rescued by direct transformation into
Mycobacterium smegmatis. This method reliably produced recombinant plaques with essentially perfect fidelity and minimal screening requirements. The assembly systems were then applied to
the rapid genetic manipulation of the phages, with recombinant phages containing gene deletions, insertions, and point mutations. Phenotyping demonstrates the ability to affect host range and
alter the lytic/lysogenic cycle. These systems represent a model for simplified phage molecular biology, with applications in the development of new therapeutic systems targeting NTM infections.

Synthetic Mycobacteriophage Assembly Designs Deletions and Point Mutants via Plasmid Mutagenesis
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