Application of a fully synthetic golden gate assembly
system to the rapid and flexible engineering of
Pseudomonas aeruginosa phage KMV
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Abstract Streamlined Phage Engineering: Genome Synthesis via
High-Complexity Golden Gate Assembly (HC-GGA)

Assemble complete recombinant
genome in one step!

Bacteriophages have potential applications in human and veterinary medicine,
agriculture, food safety, and biosecurity. Phage therapy, the application of phages to treat

Break genome into small
cloneable fragments

antibiotic-resistant bacterial infections, typically requires screening of environmental CO;‘;Q;HY
phages against the infecting strains for each individual patient, a laborious process that OO OO GGA
hinders development of standardized treatments. To overcome these limits, a robust
genomic engineering platform is required which permits rapid and dependable phage OO OO Pryor et. al., “Rapid 40 kb Genome
mutagenesis, including alteration of large stretches of DNA, and altering multiple regions zonstruotion from 52 Parts through
-optimized Assembly Design,
simultaneously. //?% doi.org/10.1021/acssynbio.1c00525
Sikkema et. al. “High-Complexity
We developed an engineering platform for the bacteriophage $KMV, which targets the PR IRG One-Pot Golden Gate Assembly’
. ) . . PR doi.org/10.1002/cpz1.882
important opportunistic human pathogen Pseudomonas aeruginosa. This system takes R ® .\ .
advantage of High Complexity Golden Gate Assembly (HC-GGA) design to divide the PR PR
dKMV genome into fragments small enough to be conveniently obtained as synthetic
DNA, and, through selection of breakpoints to separate promoters from toxic genes,
enable all but one fragment to be maintained in E. coli propagatable vectors. These , ,
. : . . Desired recombinant phages come Transformation
fragments are assembled in a high accuracy, one-pot reaction, with clonal plaques after out - little to no screening required! (Electroporation)
transformation. The system has been applied to the production of point mutations,
incorporation of fluorescent reporter genes and other inserts, deletion of a non-essential Advantages of direct genome synthesis:

gene, and functional domain swaps within tail fiber genes with downstream effects on Assemble up to 36 parts in a single assembly reaction

host range. All genome edits are accomplished through simple manipulation of plasmid
parts through classic molecular biology or substitution of small synthetic parts, bypassing
laborious recombineering strategies for phage engineering. Assemblies can be
performed in parallel, going from parts to plagues in <1 week, with very low error rates (<
1in 100,000 bp) necessitating minimal screening.

Break phage genomes into 1-5kb fragments — easily amplified & cloned

Direct transformation into host, no secondary passage for construct propagation
Minimal screening - low rates of misassembly, SNPs, indels

Genome engineering via part modification

Modify multiple regions simultaneously
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Online tools to support design: https://goldengate.neb.com/#!/ https://ligasefidelity.neb.com/

Synthetic pKMV Assembly and Reboot DNA Insertions Define KMV Genome Size Limits
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For each variant, four plaques were passaged 10
times; +0.5, +1.0, and +1.5 kb inserts remained
stable, +2.0 kb showed some population with
deletions, and all +2.5 kb and greater strains had
lost significant portions of the insert.

The KMV genome was divided in silico into 28 parts; 27 were obtained as cloned fragments, one region (F2, which contains the
early promoters) could not be cloned in E. coli and was used as a PCR-amplified gBlock. HC-GGA reactions using BsmBI-v2
NEBridge Golden Gate Enzyme Mix and 3nM of each fragment were carried out using a 15-hour cycling protocol ((42°C, 5 min
— 16°C, 5 min) x 90 cycles — 60°C, 5 min). 1 uL of assembly was transformed into 50 pL electrocompetent NEB 1088 E. coli,
mixed with PAO1, and plated. Individual plaques were picked for propagation and sequencing.

65% of plaques were fully correct, with no SNPs or indels. 100% of the observed errors occurred in the non-clonal F2.
Eight plaques were propagated and showed identical growth phenotypes to true wt.

Sequencing confirmed deletions were
predominately within the inserted stuffer DNA, a
single plaque contained a deletion of stuffer DNA
and gp47-48.

$KMV can stably accept 1.5 — 2 kb insertions

Point Mutations Inserted via Plasmid Mutagenesis
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