INSTRUCTION MANUAL

be INSPIRED drive DISCOVERY stay GENUINE

OneTaq® One-Step RT-PCR Kit

NEB #E5315S

30 reactions Version 5.0_10/20

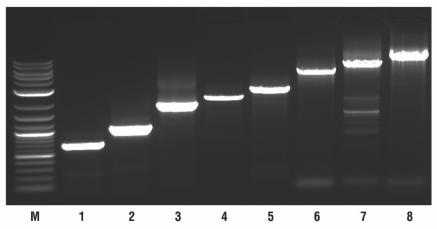
Table of Contents

Quality Controls	2
Important Factors for Successful RT-PCR	2
Template RNA	2
RNA-Priming Choices	3
Magnesium & dNTPs	3
GC-rich Targets	
Reaction Conditions	3
One-Step RT-PCR Protocols	4
Troubleshooting	6
References	
Frequently Asked Questions (FAQs)	
Ordering Information	
Revision History	8

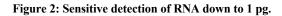
Kit Components

All kit components should be stored for one year at $-20^{\circ}C$ except where noted.	
One <i>Taq</i> One-Step Enzyme Mix ProtoScript [®] II Reverse Transcriptase, One <i>Taq</i> Hot Start DNA Polymerase, Murine RNase Inhibitor and stabilizers	60 µl
One <i>Taq</i> One-Step Reaction Mix Buffer containing 3.2 mM MgCI ₂ , 0.5 mM dNTPs each	800 µl
Quick-Load [®] One <i>Taq</i> One-Step Reaction Mix Colored buffer containing 3.2 mM MgCI ₂ , 0.5 mM dNTPs each, for direct gel loading	800 µ1
Nuclease-free H ₂ O	1.5 µl

Introduction


The One*Taq* One-Step RT-PCR Kit offers sensitive and robust end-point detection of RNA templates. cDNA synthesis and PCR amplification steps are performed in a single reaction using gene-specific primers, resulting in a streamlined RT-PCR protocol.

The kit combines three optimized mixes: One*Taq* One-Step Enzyme Mix, One*Taq* One-Step Reaction Mix and One*Taq* One-Step Quick-Load Reaction Mix. The Enzyme Mix combines ProtoScript II Reverse Transcriptase, Murine RNase Inhibitor and One*Taq* Hot Start DNA Polymerase. ProtoScript II Reverse Transcriptase is a mutant M-MuLV reverse transcriptase with reduced RNase H activity and increased thermostability. One*Taq* Hot Start DNA Polymerase is mixture of a Hot Start *Taq* DNA Polymerase combined with a proof-reading DNA polymerase, resulting in high-yield amplification with minimal optimization. The One*Taq* One-Step RT-PCR Kit is capable of amplifying long transcripts up to 9 kb in length.


Two optimized reaction mixes are included, One*Taq* One-Step Reaction Mix and Quick-Load One*Taq* One-Step Reaction Mix. The reaction mixes offer robust conditions for both cDNA synthesis and PCR amplification. The unique One*Taq* Quick-Load One-Step Reaction Mix contains additional dyes, offering color indication for reaction setup as well as direct gel loading.

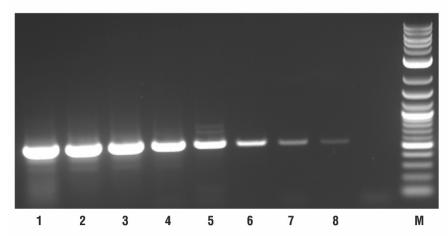

Both total RNA and mRNA can be used as template. The kit can detect a GAPDH target as low as 0.1 pg per reaction. It can routinely detect RNA targets up to 9 kb. The One*Taq* One-Step RT-PCR Kit is capable of multiplex detection of two or three targets.

Figure 1: Detection of RNA templates of different length.

About 100 ng of Jurkat total RNA was used in 50 µl reactions following the standard protocol. The target sizes were Lane 1: 0.7 kb, Lane 2: 1.1 kb, Lane 3: 1.9 kb, Lane 4: 2.3 kb, Lane 5: 2.5 kb, Lane 6: 5.5 kb, Lane 7: 7.6 kb and Lane 8: 9.3 kb. The marker lane (M) contains Quick-Load 1 kb Plus DNA Ladder (NEB #N0469).

Serial dilution of HeLa total RNA (Lane 1: 1 μ g, Lane 2: 100 ng, Lane 3: 10 ng, Lane 4: 1 ng, Lane 5: 100 pg, Lane 6: 10 pg, Lane 7: 1 pg, Lane 8: 0.1 pg) was used in 50 μ l reactions following the Standard Protocol. The marker lane (M) contains Quick-Load 1 kb Plus DNA Ladder (NEB #N0469).

Quality Controls:

The performance of One*Taq* One-Step RT-PCR Master Mix is tested for sensitivity, multiplexing and product length. Using a GAPDH amplicon, the kit can detect 1 pg of Hela total RNA after 40 cycles. Multiplex detection of three targets is tested with amplicons of 0.5 kb, 0.6 kb and 0.7 kb. The length of cDNA achieved is verified by detection of a 9.3 kb amplicon of SMG1 phosphatidylinositol 3-kinase-related kinase gene after 40 cycles.

Important Factors for Successful RT-PCR

Template RNA

- High quality RNA is essential for sensitive target detection.
- For low abundance genes or long targets, more RNA template is required.
- RNA template should be free of any RNase contamination.
- Denaturation of RNA and primer at 65–70°C for 5 minutes may remove some secondary structures, thereby improving target detection.

RNA-priming Choices

- We recommend using gene-specific primers for one-step RT-PCR. Design of gene-specific primers should follow best practices ("Guidelines for PCR Optimization with Thermophilic DNA Polymerases" at www.neb.com).
- For most reactions, a final primer concentration of 200–400 nM is optimal. For best results, we recommend titering primer concentrations in the range of 100–800 nM.
- If genomic DNA contamination is an issue, try to design primers located on different exons or at the exon-intron junction.

Magnesium and dNTPs

- The magnesium concentration in the Reaction Mix is 3.2 mM (1.6 mM at final 1X concentration), which is optimal for most targets.
- The dNTP concentration in the reaction mix is 500 nM (250 nM at final 1X concentration), which is optimal for most targets.

GC-rich Targets

• DMSO, up to 10%, can be included to improve the detection of GC-rich targets

Reaction Conditions

- First strand cDNA synthesis can be carried out between 42°C to 55°C. As a starting point, we recommend incubation at 48°C for 15 minutes. Short targets can be completed with shorter incubation times. Longer incubations up to 1 hour may increase the cDNA yield.
- The pre-denature step at 94°C for 1 minute is sufficient to inactivate ProtoScript II Reverse Transcriptase.

REACTION COMPONENTS	FINAL CONCENTRATION
Reaction Mix	1X
Enzyme Mix	1X
RNA Template	1 μg-100 pg of total RNA 1 pg-100 ng of mRNA
Gene Specific Primers	100-800 nM

		1	
CYCLE STEP	TEMP	TIME	CYCLES
Reverse Transcription	48°C	15-30 minutes	1
Initial Denaturation	94°C	1 minute	1
Denaturation	94°C	15 seconds	
Annealing	50-65°C	30 seconds	40
Extension	68°C	1 minute per kb	
Final Extension	68°C	5 minutes	1
Hold	4°C	∞	1

Standard PCR Protocol

One-Step RT-PCR Protocols

Quick-Load OneTaq One-Step Reaction Mix can be used if direct gel loading is desired.

Standard Protocol

Thaw system components and mix by inverting several times.

1. Mix the following components, except RNA, in sterile RNase-free microfuge tubes.

REAGENT	VOLUME
One <i>Taq</i> One-Step Reaction Mix (2X)	25 µl
One <i>Taq</i> One-Step Enzyme Mix (25X)	2 µl
Gene-specific Forward Primer (10 µM)	2 µl
Gene-specific Reverse Primer (10 µM)	2 µl
Nuclease-free H ₂ O	19–x μl
Total RNA (up to 1 µg)	x µl
Total Volume	50 µl

2. Add RNA template last, and start reactions immediately, as follows:

CYCLE STEP	TEMP	TIME	CYCLES
Reverse Transcription	48°C	15-30 minutes	1
Initial Denaturation	94°C	1 minute	1
Denaturation	94°C	15 seconds	
Annealing	50-65°C	30 seconds	40
Extension	68°C	1 minute per kb	
Final Extension	68°C	5 minutes	1
Hold	4°C	x	1

Alternative Protocol

If denaturation of template RNA is desired, use the following protocol:

1. Mix RNA sample and primers in sterile, RNase-free microfuge tubes.

REAGENT	VOLUME
Total RNA (up to 1 µg)	x μl
Gene-specific reverse primer (10 μ M)	2 µl
One <i>Taq</i> One-Step Reaction Mix (2X)	25 µl
Nuclease-free H ₂ O	19–x µl
Total Volume	46 µl

Denature for 5 minutes at 65°C. Put promptly on ice.

2. Add the following components to the tube:

REAGENT	VOLUME
One <i>Taq</i> One-Step Enzyme Mix (25X)	2 µl
Gene-specific Forward Primer (10 µM)	2 µl

3. Add tubes to the thermocycler, and run the following program:

CYCLE STEP	TEMP	TIME	CYCLES
Reverse Transcription	48°C	15 minutes	1
Initial Denaturation	94°C	1 minute	1
Denaturation	94°C	15 seconds	
Annealing	50-65°C	30 seconds	40
Extension	68°C	1 minute per kb	
Final Extension	68°C	5 minutes	1
Hold	4°C	∞	1

No-RT Negative Control Reaction

Mix the following components in a sterile RNase-free microfuge tube:

REAGENT	VOLUME
One <i>Taq</i> One-Step Reaction Mix (2X)	25 µl
Gene-specific Forward Primer (10 µM)	2 µl
Gene-specific Reverse Primer (10 µM)	2 µl
Hot Start One Taq DNA Polymerase (not provided)	2 U
Nuclease-free H ₂ 0	19-x µl
Total RNA (up to 1 µg)	x μl
Total Volume	50 µl

Proceed with reaction conditions as follows:

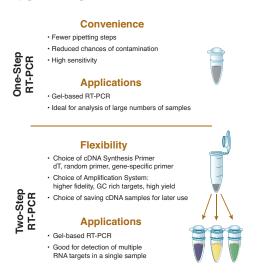
CYCLE STEP	TEMP	TIME	CYCLES
Reverse Transcription	48°C	15 minutes	1
Initial Denaturation	94°C	1 minute	1
Denaturation	94°C	15 seconds	
Annealing	50-65°C	30 seconds	40
Extension	68°C	1 minute per kb	
Final Extension	68°C	5 minutes	1
Hold	4°C	∞	1

Troubleshooting

OBSERVATION	POSSIBLE CAUSE(S)	SOLUTION(S)
		• Check the integrity of the RNA by denaturing agarose gel electrophoresis (2).
	RNA is low quality	• RNA should have a minimum A ₂₆₀ /A ₂₈₀ ratio of 1.7 or higher. Ethanol precipitation followed by a 70% ethanol wash can remove most contaminants such as EDTA and guanidinium. Precipitation with lithium chloride can remove polysaccharides (2).
Low yield of product		• Phenol/chloroform extraction and ethanol extraction can remove contaminant proteins such as proteases (2).
	Not enough RNA	 RNA targets are present at low abundance; use 100 ng-1 μg total RNA or m RNA.
	Inefficient cDNA Synthesis	• Some target RNA may contain strong pauses for RT denature the RNA sample or redesign primers.
	PCR Condition is Not Optimal	Optimize annealing temperature, increase cycle number, and/or design.
	Problematic Primers	Re-design primers following guidelines of primer design.
Low Specificity	Amplification of larger genomic copy	• Design primers located on different exons or at the intron-exon junction. Pre-treat RNA samples with DNasel.
	PCR condition is not optimal	Optimize annealing temperature, and/or increase cycle number

References

1. Liao, J. and Gong, Z. (1997) Biotechniques, 23, 368-370.


2. Sambrook, J. and Russel, D.W. (2001) Molecular Cloning: A Laboratory Manual (3rd Ed.) Cold Spring Harbor: Cold Spring Harbor Laboratory Press.

3. Sellner, L N. and Turbett, G. R. (1998) Biotechniques, 25, 230–234.

Frequently Asked Questions (FAQs)

How do I choose between One-Step RT-PCR and Two-Step RT-PCR protocols?

Both one-step and two-step RT-PCR protocols offer robust detection of RNA targets. Depending on your experimental design and goals, you may prefer one protocol over the other. Please refer to the following table:

What's the difference between NEB #E6560 and NEB #E5315?

Both kits use ProtoScript II Reverse Transcriptase for First Strand cDNA Synthesis. ProtoScript II Reverse Transcriptase is a mutant M-MuLV Reverse Transcriptase with reduced RNase H activity and increased thermostability. NEB #E6560 is a kit for first strand cDNA synthesis; its product can be used for downstream PCR or qPCR analysis. NEB #E5315 is a One-Step RT-PCR kit; its product is a specific dsDNA PCR product.

How does One-Step RT-PCR kit protocol work for NEB #E5315?

The One-Step RT-PCR reactions allow both cDNA synthesis and PCR amplification in the same reaction buffer. A thermocycler is programmed so that cDNA synthesis takes place first (48°C for 15 minutes), then reverse transcriptase is inactivated while Hot Start Taq Polymerase is activated (94°C for 1 minute), followed by 40 cycles of PCR amplification.

Can I use a 25 µl reaction volume rather than a 50 µl reaction volume using NEB #E5315?

Yes, you can use a 25 µl reaction by scaling down reagent volumes by half.

What conditions should I use for cDNA synthesis?

We recommend using a cDNA synthesis temperature in the range of 42°C to 55°C for 15–30 minutes. Routinely, we use 48°C for 15 minutes.

Do I need to optimize the reaction components?

The One*Taq* One-Step RT-PCR Kit standard reaction conditions (1.6 mM MgCl₂ and 250 μ M dNTP at 1X) work well for most targets. You may be able to add more MgCl₂ or dNTPs to make your reactions work better, but in most cases re-designing your primers may be more effective.

How much RNA template should I use?

RNA template of high quality is critical for successful RT-PCR detection. Most targets can be routinely detected with inputs of 100 ng total RNA. We recommend using 10–100 ng of RNA per reaction, if possible. The more abundant your target RNA is, the less RNA template you all need to use.

How should I design my primers?

We recommend following general guidelines for PCR primer design: primers are generally 20–40 nucleotides long, with GC content of 40–60%, and primer pairs should not share complementary sequences at the 3' end.

What's the recommended primer concentration?

For most targets, primers at 200 nM to 400 nM work well. You may want to titer the primer concentration to the range of 100 nM to 800 nM.

How many PCR cycles should I do?

We recommend 40 cycles for most targets. Some abundant RNA targets can be detected with as few as 25 cycles.

Ordering Information

NEB #	PRODUCT	SIZE
E5315S	OneTaq One-Step RT-PCR Kit	30 reactions

COMPANION PRODUCTS

NEB #	PRODUCT	SIZE
E6560S/L	ProtoScript II First Strand cDNA Synthesis Kit	30/150 reactions
M0368S/L/X	ProtoScript II Reverse Transcriptase	4,000/10,000/40,000 units
N0550S	Quick-Load Purple 1 kb Plus DNA Ladder	250 gel lanes
M0314S/L	RNase Inhibitor, Murine	3,000/15,000 units
M0481S/L/X	One Taq Hot Start DNA Polymerase	200/1,000/5,000 units
N0447S/L	Deoxynucleotide (dNTP) Solution Mix	40/80 µmol of each

Revision History

REVISION #	DESCRIPTION	DATE
1.0		8/14
1.1		11/15
2.0		6/18
3.0	Update to new manual format	1/20
4.0	Update legal text.	3/20
5.0	Update legal text	10/20

Licenses/Patents/Disclaimers:

Notice to Purchaser: Nucleic acid-based aptamers for use with thermophilic DNA polymerases are licensed exclusively by New England Biolabs, Inc. from SomaLogic, Inc. New England Biolabs, Inc. gives the Buyer/User a non-exclusive license to use the aptamer-based One *Taq*[®] RT-PCR Kit for RESEARCH PURPOSES ONLY. Commercial use of the aptamer-based One *Taq* RT-PCR Kit requires a license from New England Biolabs, Inc. Please contact <u>busdev@neb.com</u> for more information.

This product is intended for research purposes only. This product is not intended to be used for therapeutic or diagnostic purposes in humans or animals.

This product is covered by one or more patents, trademarks and/or copyrights owned or controlled by New England Biolabs, Inc. For more information about commercial rights, please email us at busdev@neb.com. While NEB develops and validates its products for various applications, the use of this product may require the buyer to obtain additional third party intellectual property rights for certain applications.

B CORPORATION[™] is a trademark of B Lab, Inc.

© Copyright 2020, New England Biolabs, Inc.; all rights reserved.

be INSPIRED *drive* DISCOVERY *stay* GENUINE

New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938-2723 Telephone: (978) 927-5054 Toll Free: (USA Orders) 1-800-632-5227 (USA Tech) 1-800-632-7799 Fax: (978) 921-1350 e-mail: info@neb.com