

240 County Road Ipswich, MA 01938-2723 Tel 978-927-5054 Fax 978-921-1350 www.neb.com info@neb.com

New England Biolabs Certificate of Analysis

Product Name: Mfel
Catalog Number: R0589L
Concentration: 10,000 U/ml

Unit Definition: One unit is defined as the amount of enzyme required to digest 1 µg

of Lambda DNA in 1 hour at 37°C in a total reaction volume of 50 μl.

Packaging Lot Number: 10116126
Expiration Date: 07/2022
Storage Temperature: -20°C

Storage Conditions: 50 mM NaCl, 10 mM Tris-HCl (pH 7.4), 1 mM DTT, 0.1 mM EDTA, 50%

Glycerol, 200 μg/ml BSA

Specification Version: PS-R0589S/L v2.0

Mfel Component List				
NEB Part Number	Component Description	Lot Number	Individual QC Result	
R0589LVIAL	Mfel	10116128	Pass	
B6004SVIAL	rCutSmart™ Buffer	10108412	Pass	

Assay Name/Specification	Lot # 10116126
Ligation and Recutting (Terminal Integrity) After a 20-fold over-digestion of Lambda DNA with MfeI, >95% of the DNA fragments can be ligated with T4 DNA ligase in 16 hours at 16°C. Of these ligated fragments, >95% can be recut with MfeI.	Pass
Non-Specific DNase Activity (16 Hour) A 50 µl reaction in CutSmart™ Buffer containing 1 µg of Lambda DNA and a minimum of 30 Units of Mfel incubated for 16 hours at 37°C results in a DNA pattern free of detectable nuclease degradation as determined by agarose gel electrophoresis.	Pass
Endonuclease Activity (Nicking) A 50 µl reaction in CutSmart™ Buffer containing 1 µg of supercoiled pUC19 DNA and a minimum of 10 units of Mfel incubated for 4 hours at 37°C results in <10% conversion to the nicked form as determined by agarose gel electrophoresis.	Pass
Blue-White Screening (Terminal Integrity) A sample of LITMUS38i vector linearized with a 10-fold excess of Mfel, religated and transformed into an E. coli strain expressing the LacZ beta fragment gene results in <1% white colonies.	Pass

R0589L / Lot: 10116126

Page 1 of 2

Assay Name/Specification	Lot # 10116126
Exonuclease Activity (Radioactivity Release)	Pass
A 50 µl reaction in CutSmart™ Buffer containing 1 µg of a mixture of single and	1 433
double-stranded [3H] E. coli DNA and a minimum of 10 units of Mfel incubated for 4 hours at 37°C releases <0.1% of the total radioactivity.	

This product has been tested and shown to be in compliance with all specifications.

One or more products referenced in this document may be covered by a 3rd-party trademark. Please visit www.neb.com/trademarks for additional information.

Penghua Zhang Production Scientist

09 Aug 2021

Josh Hersey

Packaging Quality Control Inspector

09 Aug 2021

