Protein Expression in Yeast

Expression of proteins in yeast is a common alternative to prokaryotic and higher eukaryotic expression. Yeast cells offer many of the advantages of producing proteins in microbes (growth speed, easy genetic manipulation, low cost media) while offering some of the attributes of higher eukaryotic systems (post translational modifications, secretory expression). Several yeast protein expression systems exist in organisms from the genera Saccharomyces, Pichia, Kluyveromyces, Hansenula and Yarrowia.

At the heart of any yeast expression system is the expression vector. Vectors that integrate into the host chromosome are most widely used because of their mitotic stability in the absence of a selection. However, episomal expression vectors exist for some yeast systems. Expression vectors typically contain a strong yeast promoter/terminator and a yeast selectable marker cassette. Most yeast vectors can be propagated and amplified in E. coli to facilitate cloning and as such, also contain an E. coli replication origin and ampicillin selectable marker. Finally, many yeast expression vectors include the ability to optionally clone a gene downstream of an efficient secretion leader (usually that of mating factor) that efficiently directs a heterologous protein to become secreted from the cell.

A growing number of engineered yeast strains are becoming available for protein expression. Strains have been described that increase yield of secreted proteins, improve the performance of certain affinity tags, reduce proteolysis, define the composition of N-glycans, and permit non-native amino acids (e.g. selenomethionine) into proteins.

The system was adapted for life sciences research by NEB and a variety of vectors and host strains in a frozen competent format are offered.


Choose Type:

FAQs for Protein Expression in Yeast
Protocols for Protein Expression in Yeast
Application Notes Protein Expression in Yeast
    Publications related to Protein Expression in Yeast
  1. Sakhtah, H., Behler, J., Ali-Reynolds, A., Causey, T.B., Vainauskas, S., Taron, C.H. 2019. A novel regulated hybrid promoter that permits autoinduction of heterologous protein expression in Kluyveromyces lactos Appl. Environ. Microbiol.. , PubMedID: 31053583, DOI:
  2. Chuzel, L., Ganatra, M.B., Schermerhorn, K.M., Gardner, A.F., Anton, B.P., Taron, C.H. 2017. Complete genome sequence of Kluyveromyces lactis strain GG799, a common yeast host for heterologous protein expression Genome Announcements. 5(30), PubMedID: 28751387, DOI:
Example of K. lactis Expression
Lane 1: Protein Marker, Broad Range (NEB #P7702)
Lane 2: spent culture medium (15 µl) from wild-type K. lactis cells.
Lane 3: spent culture medium (15 µl) from K. lactis cells harboring an integrated expression cassette containing the E. coli malE gene
Legal Information
This product is covered by one or more patents, trademarks and/or copyrights owned or controlled by New England Biolabs, Inc (NEB).

While NEB develops and validates its products for various applications, the use of this product may require the buyer to obtain additional third party intellectual property rights for certain applications.

For more information about commercial rights, please contact NEB's Global Business Development team at [email protected].

This product is intended for research purposes only. This product is not intended to be used for therapeutic or diagnostic purposes in humans or animals.