• My NEB
  • Print
  • PDF
  • Glycobiology

    Glycobiology is the study of the structure, function and biology of carbohydrates, often called glycans, which are widely distributed in nature (1). It is a small but rapidly growing field in biology, with relevance to biomedicine, biotechnology, biofuels and basic research. In eukaryotic cells the majority of proteins are post-translationally modified (2). A common modification, essential for cell viability, is the attachment of glycans. For a visual representation, see the N-linked and O-linked glycosylation tab below.

    Glycans define many properties of glycoconjugates (glycoproteins and glycolipids). For instance, it is largely through glycan–protein interactions that cell–cell and cell–pathogen contacts occur. Likewise, glycan molecules modulate many other processes important for cell and tissue differentiation, metabolic and gene regulation, protein activity, protein clearance, transport, and more (3-10). For more information, see the role of carbohydrates in the inflammation response tab below.

    References

    1. Spiro, R. G. (2002) Glycobiology 12, 43R-56R. PMID: 112042244
    2. Khoury G.A. et al (2011) Scientific Reports 1: 90. PMID: 22034591
    3. Varki A. (1993) Glycobiology. 3(2):97-130. PMID: 8490246
    4. Zhao Y.Y. et al (2008) Cancer Sci. 99(7):1304-10. PMID: 18492092
    5. Zhao Y. et al (2008) FEBS J. 275(9):1939-48. PMID: 18384383
    6. Skropeta D. (2009) Bioorg Med Chem. 17(7):2645-53. PMID: 19285412
    7. Neu U. et al (2011) Curr Opin Struct Biol. 21(5):610-8. PMID: 21917445
    8. Cerliani J.P. et al (2011) J Clin Immunol. 31(1):10-21. PMID: 21184154
    9. Aarnoudse C.A. et al (2006) Curr Opin Immunol. 18(1):105-11. PMID: 16303292
    10. Arnold J.N. (2006) Immunol Lett. 106(2):103-10. PMID: 16814399
    1. Overview of Glycobiology

      Learn about the core sequences and common modifications of N-linked and O-linked glycans in this video. Analysis of these glycans and/or peptide portions of the glycoprotein can be accomplished with the use of deglycosylation enzymes, which are explained in detail. Unlike other chemical deglycosylation methods, enzymatic treatment is much gentler and can provide complete sugar removal with no protein degradation.

    2. Identification and Characterization of Protein Glycosylation

      Here we illustrate the use of glycosidases for the analysis of a model glycoprotein: recombinant human chorionic gonadotropin beta (hCGβ), which carries both N-glycans and O-glycans in this video. The technique requires only simple instrumentation and typical consumables, and it can be readily adapted to the analysis of multiple glycoprotein samples.

    3. Elucidating the Complexity of Heparin Oligosaccharide Analysis

      Learn more about the structural elucidation of complex and diverse heparin oligosaccharides using Bacteroides Heparinase I, II and III in combination with downstream mass spec analysis.

    Glycobiology includes these areas of focus:

    Sequencing Glycans
    Biosynthesis of Glycans in Eukaryotes
    Removal of N-Linked & O-Linked Glycans from Glycoproteins
    Glycoprotein Production in Various Expression Systems
    Depolymerization of Heparin/HS
    MS Analysis of GAGs

    FAQs for Glycobiology

      Publications related to Glycobiology:

    1. Stech M, Quast RB, Sachse R, Schulze C, Wüstenhagen DA, Kubick S (2014). A continuous-exchange cell-free protein synthesis system based on extracts from cultured insect cells PLoS One. 9(5), e96635. PubMedID: 24804975, DOI: 10.1371/journal.pone.0096635
    2. Kwon HM, Lee KH, Han BW, Han MR, Kim DH, Kim DE (2014). An RNA aptamer that specifically binds to the glycosylated hemagglutinin of avian influenza virus and suppresses viral infection in cells PLoS One. 9(5), e97574. PubMedID: 24835440, DOI: 10.1371/journal.pone.0097574
    3. Haller G, Li P, Esch C, Hsu S, Goate AM, Steinbach JH (2014). Functional characterization improves associations between rare non-synonymous variants in CHRNB4 and smoking behavior PLoS One. 9(5), e96753. PubMedID: 24804708, DOI: 10.1371/journal.pone.0096753
    4. Wright CR, Brown EL, Della-Gatta PA, Ward AC, Lynch GS, Russell AP (2014). G-CSF does not influence C2C12 myogenesis despite receptor expression in healthy and dystrophic skeletal muscle Front Physiol. 5, 170. PubMedID: 24822049, DOI: 10.3389/fphys.2014.00170
    5. Zhao H, Blazanovic K, Choi Y, Bailey-Kellogg C, Griswold KE (2014). Gene and protein sequence optimization for high-level production of fully active and aglycosylated lysostaphin in Pichia pastoris Appl Environ Microbiol. 80(9), 2746-53. PubMedID: 24561590, DOI: 10.1128/AEM.03914-13
    6. Wicht O, Burkard C, de Haan CA, van Kuppeveld FJ, Rottier PJ, Bosch BJ (2014). Identification and Characterization of a Proteolytically Primed Form of the Murine Coronavirus Spike Proteins after Fusion with the Target Cell J Virol. 88(9), 4943-52. PubMedID: 24554652, DOI: 10.1128/JVI.03451-13
    7. Rosenbaum EE, Vasiljevic E, Brehm KS, Colley NJ (2014). Mutations in four glycosyl hydrolases reveal a highly coordinated pathway for rhodopsin biosynthesis and N-glycan trimming in Drosophila melanogaster PLoS Genet. 10(5), e1004349. PubMedID: 24785692, DOI: 10.1371/journal.pgen.1004349
    8. Rosenbaek LL, Kortenoeven ML, Aroankins TS, Fenton RA (2014). Phosphorylation decreases ubiquitylation of the thiazide-sensitive cotransporter NCC and subsequent clathrin-mediated endocytosis J Biol Chem. 289(19), 13347-61. PubMedID: 24668812, DOI: 10.1074/jbc.M113.543710
    9. Botto L, Cunati D, Coco S, Sesana S, Bulbarelli A, Biasini E, Colombo L, Negro A, Chiesa R, Masserini M, Palestini P (2014). Role of lipid rafts and GM1 in the segregation and processing of prion protein PLoS One. 9(5), e98344. PubMedID: 24859148, DOI: 10.1371/journal.pone.0098344
    10. Möykkynen T, Coleman SK, Semenov A, Keinänen K (2014). The N-terminal domain modulates α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor desensitization J Biol Chem. 289(19), 13197-205. PubMedID: 24652293, DOI: 10.1074/jbc.M113.526301
    11. Itahana Y, Han R, Barbier S, Lei Z, Rozen S, Itahana K (2014). The uric acid transporter SLC2A9 is a direct target gene of the tumor suppressor p53 contributing to antioxidant defense Oncogene. PubMedID: 24858040, DOI: 10.1038/onc.2014.119
    12. Arakel EC, Brandenburg S, Uchida K, Zhang H, Lin YW, Kohl T, Schrul B, Sulkin MS, Efimov IR, Nichols CG, Lehnart SE, Schwappach B (2014). Tuning the electrical properties of the heart by differential trafficking of KATP ion channel complexes J Cell Sci. 127(Pt 9), 2106-19. PubMedID: 24569881, DOI: 10.1242/jcs.141440
    13. Rasmussen, T.N., Plenge, P., Bay, T., Egebjerg, J., Gether, U. (2009). A single nucleotide polymorphism in the human serotonin transporter introduces a new site for N-linked glycosylation Neuropharmacology . 57, 287-94. PubMedID: 19500602
    14. Gong, B., Cukan, M., Fisher, R., Li, H., Stadheim, T.A., Gerngross, T. (2009). Characterization of N-linked glycosylation on recombinant glycoproteins produced in Pichia pastoris using ESI-MS and MALDI-TOF Methods Mol. Biol. . 534, 213-23.
    15. Gefter, J.V., Shaufl, A.L., Fink, M.P., Delude, R.L. (2009). Comparison of distinct protein isoforms of the receptor for advanced glycation end-products expressed in murine tissues and cell lines Cell Tissue Res. . 337, 79-89. PubMedID: 19415334
    16. Boeggeman, E., Ramakrishnan, B., Pasek, M., Manzoni, M., Puri, A., Loomis, K.H., Waybright, T.J., Qasba, P.K. (2009). Site specific conjugation of fluoroprobes to the remodeled Fc N-glycans of monoclonal antibodies using mutant glycosyltransferases: application for cell surface antigen detection Bioconjug. Chem. . 20, 1228-36. PubMedID: 19425533
    17. Velho, A.M., Jarvis, S.M. (2009). Topological studies of hSVCT1, the human sodium-dependent vitamin C transporter and the influence of N-glycosylation on its intracellular targeting Exp. Cell Res. . 315, 2312-21. PubMedID: 19379732
    18. Wagner-Rousset, E., Bednarczyk, A., Bussat, M.C., Colas, O., Corvaïa, N., Schaeffer, C., Van Dorsselaer, A., Beck, A. (2008). The way forward, enhanced characterization of therapeutic antibody glycosylation: comparison of three level mass spectrometry-based strategies J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.. 872, 23-37. PubMedID: 18672411
    19. Graham, D.R., Mitsak, M.J., Elliott, S.T., Chen, D., Whelan, S.A., Hart, G.W., Van Eyk, J.E. (2008). Two-dimensional gel-based approaches for the assessment of N-Linked and O-GlcNAc glycosylation in human and simian immunodeficiency viruses Proteomics. 8, 4919-30. PubMedID: 19072736
    20. Wong-Madden, S.T., Landry, D., and Guthrie, E.P. (1997). Discovery and Uses of Novel Glycosidases Techniques in Glycobiology. 401-408.

    N-Linked and O-Linked Glycosylation

    N-linked glycosylation occurs through consensus asparagine residues of the protein, while O-glycosylation occurs through serine or threonine residues.