Molecular Diagnostics for Gastrointestinal Parasites and Impact on Intestinal Microbiota in Rural Argentinian Children

Introduction

- >2 billion GI parasite infections worldwide
 - Poorest and resource-deprived communities
- Standard method of diagnosis: Stool microscopy
 - Sensitivity variable depending on prevalence, species, and concentration method
 - 50-90% sensitivity
- Underestimates polyparasitism
- qPCR is rapid, quantitative, and high-throughput species-specific method
- Gl parasites may disrupt normal intestinal microbiota
 - Decreased biodiversity is associated with disease
 - Malabsorption
 - Inflammatory bowel diseases

Materials and methods

- Field site: Óran, Argentina
 - Peri-urban community
 - Temperate climate
- 99 patient samples
 - Asymptomatic children
 - Ages 2-10 years old
 - No recent antibiotics
- Stool samples evaluated by qPCR and microscopy for presence of:
 - *Ascaris lumbricoides* (Al)
 - *Strongyloides stercoralis* (Ss)
 - *Ancylostoma duodenale* (Ad)
 - *Giardia lamblia* (Gl)
 - *Necator americanus* (Na)
 - *Cryptosporidium* species (C)
 - *Trichuris trichiura* (Tt)
 - *Entamoeba histolytica* and *Giardia* infection than microscopy. (Tt, C) no positives

Results

- qPCR (ITS region) (ABI 7500) identified more cases of *Ascaris*, hookworm (Hw), *Strongyloides, Entamoeba histolytica* and *Giardia* infection than microscopy. (Tt, C) no positives
 - *Giardia* infected group had higher abundance of *Bacteroidetes* compared to No Parasites group with higher *Firmicutes* (p < 0.05)
 - *Giardia* infection decreases intestinal bacterial biodiversity

Conclusions

- qPCR can detect more parasites than microscopy
 - *Ascaris* 93.3% Sens, 90.5% NPV
 - Hookworm 95.5% Sens, 98.4% NPV
 - *Strongyloides* 100% Sens, NPV
 - *Giardia* 87.5% Sens, 97.2% NPV
- qPCR can identify polyparasitism better than microscopy
 - Important for treatment selection
 - Gl parasitic infections at high prevalence
- *Giardia* infected group had decreased intestinal microbiota biodiversity (p < 0.01667)
 - *Giardia* infected group (2.7)
 - No Parasite group (3.45)
- *Giardia* infected group had significant increases in *Bacteroidetes* specifically *Prevotella* species
 - Useful for epidemiology and morbidity studies
- Surveillance after mass drug administration and vaccine programs
- Expand understanding of morbidity and malnutrition
- Cost is less than $1.00 US per patient to screen for these parasites
- Future directions
 - Correlate quantity of parasite DNA with clinical outcomes
 - Associate morbidity to changes in microbiome
 - Treat children with anti-parasitics and evaluate changes in microbiome

Acknowledgements

Funding for this project was provided by the National School of Tropical Medicine and New England BioLabs, Inc.