INTRODUCTION

Cas9 nucleases is the key effector of type II CRISPR adaptive immune systems found in bacteria. The nucleases can be programmed by a single guide RNA (sgRNA) to cleave DNA in a sequence-specific manner. This property has led to its widespread adoption as a genome editing tool in research laboratories and holds great promise for biomedical and therapeutic applications. The general mechanistic features of catalysis by Cas9 homologs are comparable; however, a high degree of diversity exists among the protein sequences, which may result in subtle mechanistic differences.

RESULTS

S. aureus and S. pyogenes Cas9 bind respective sgRNA with comparable affinities and form active RNP

Unlabeled Cas9 was titrated in the presence of Cy5-labeled sgRNAs and fraction bound was calculated from changes in fluorescence anisotropy.

OVERVIEW OF CAS9 CATALYSIS

Cas9 consists of two major lobes and is in an apo state in the absence of RNA. The fold of the single guide RNA (sgRNA) 3’-terminal −80 ribonucleotides is recognized by Cas9. Upon binding the sgRNA, Cas9 undergoes a large conformational change, marked by rotation of the RuvC domain, forming a stable ribonucleoprotein complex (RNP).

The Cas9 RNP searches the DNA for a protospacer adjacent motif (PAM), which is NGG for SpyCas9 and NNGRRT for SauCas9. Locating the PAM poises the complex to form a hybrid duplex between the “reverse” strand of the DNA and the 5’-terminal −20 ribonucleotides of the sgRNA. If the DNA is complementary, an R-loop is formed, and the DNA is cut by RuvC- and HNH-like domains. Upon DNA cleavage, S. pyogenes Cas9 is known to have extremely slow product release and may exhibit additional DNase activity.

Comparison of S. pyogenes and S. aureus Cas9 homologs

S. pyogenes Cas9

S. aureus Cas9

REFERENCE