Loop-mediated Isothermal Amplification (LAMP & RT-LAMP)
LAMP is designed to drive a target nucleic acid without sophisticated equipment. LAMP uses 6-8 primers recognizing 4-6 distinct regions of the target DNA. A strand-displacing DNA polymerase initiates synthesis and two of the primers form loop structures to facilitate subsequent rounds of amplification. LAMP proceeds in minutes (e.g., 30-60 minutes) and reactions can be performed with limited resources (e.g., using a water bath for heating), and detection of amplified products can be performed with limited resources (e.g., using a water bath for heating). Detection of DNA targets is accomplished by simple addition of a reporter dye or by using a water bath for heating, and detection of results by eye. LAMP uses 4-6 primers recognizing 6-8 distinct regions of the target DNA. A strand-displacing DNA polymerase initiates synthesis and two of the primers form loop structures to facilitate subsequent rounds of amplification. LAMP procedures high sensitivity (e.g., 1-10 copies of target), and reactions can be performed in a test as 1-30 minutes. Additional reactions can be performed with limited resources (e.g., using a water bath for heating, and detection of results by eye). LAMP is designed to detect a target nucleic acid without sophisticated equipment. LAMP uses 4-6 primers recognizing 6-8 distinct regions of the target DNA. A strand-displacing DNA polymerase initiates synthesis and two of the primers form loop structures to facilitate subsequent rounds of amplification. LAMP procedures high sensitivity (e.g., 1-10 copies of target), and reactions can be performed in 1-30 minutes. Additional reactions can be performed with limited resources (e.g., using a water bath for heating, and detection of results by eye). LAMP is designed to detect a target nucleic acid without sophisticated equipment. LAMP uses 4-6 primers recognizing 6-8 distinct regions of the target DNA. A strand-displacing DNA polymerase initiates synthesis and two of the primers form loop structures to facilitate subsequent rounds of amplification. LAMP procedures high sensitivity (e.g., 1-10 copies of target), and reactions can be performed in 1-30 minutes. Additional reactions can be performed with limited resources (e.g., using a water bath for heating, and detection of results by eye).
What is isothermal DNA amplification?

The Polymerase Chain Reaction (PCR) is a well-known approach for amplifying a specific DNA sequence. PCR involves the repetitive cycling of a reaction cocktail between different temperatures to achieve amplification. As a result, PCR is in the molecular biology and molecular diagnostics laboratory. There are other methods of sequence-specific DNA amplification.

Interested in learning how NEB scientists are using isothermal amplification? Visit www.neb.com/isonothermal to find videos, protocols, and recent publications, including a publication from NEB scientists describing pH-sensitive isothermal detection.

Featured Products for Isothermal Amplification from NEB

WarmStart® LAMP KIT (DNA & RNA)

Loop-Mediated Isothermal Amplification (LAMP) is a commonly used technique for rapid nucleic acid detection. NEB’s WarmStart LAMP products provide a simple, one-step solution for DNA or RNA targets. An inner primer mix supplied with the WarmStart LAMP Kit contains the robust and rapid Bst 2.0 WarmStart DNA Polymerase and WarmStart® RTx Reverse Transcriptase, both of which are also designed for improved performance in LAMP reactions. The kit also includes a fluorescent dye to enable real-time fluorescence measurement of LAMP. The WarmStart LAMP Kit is compatible with multiple detection methods.

Advantages
- Fast
- Minimal equipment required
- Robust reaction in the presence of inhibitors
- Amplified optical detection

Optimization tips for LAMP
- Use LAMP primer design software e.g. Primer Explorer – protocool.org
- Include 2-3 tests for each target and compare performance in a LAMP
- Include ladders for faster matching
- Use high magnesium (6–8 mM) and divalent ion (1–4 mM) concentrations for fast reactions
- Optimize for routine temperature
- Use a high magnesium (6–8 mM) or Bst 2.0/3.0
- To prevent contamination, omit betaine, unless it has demonstrated benefits

RTx Reverse Transcriptase
- Validated for LAMP & RT-LAMP
- Using RNA (cDNA synthesis) or single-stranded DNA as input

Amplification reactions

Not sure which product will work best for your experiment?

NEB offers a range of DNA Polymerase-based products for isothermal DNA amplification. Use the chart to determine which product will work best for your needs.

Did you know that many of these products can be purchased in large volumes? Contact sales@neb.com to find out more.