**Oligo (dT)$_{25}$ Cellulose(4,6),(200,612)

<table>
<thead>
<tr>
<th>Lot</th>
<th>Store at</th>
<th>Exp</th>
<th>Description: An affinity matrix used for the isolation of mRNA containing polyadenylic (poly A) regions (1). This matrix consists of oligo (dT)$_{25}$ covalently coupled to a cross-linked cellulose bead. This product is guaranteed for six months when stored at 4°C in the supplied storage buffer.</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1408S</td>
<td>250 mg</td>
<td>4°C</td>
<td></td>
</tr>
<tr>
<td>Lot: 0021307</td>
<td>7/16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Low Salt Buffer:**
0.1 M NaCl
10 mM Tris-HCl (pH 7.5)
1.0 mM EDTA

**Poly rA Binding Assay:** A spectrophotometric determination of the amount of poly rA (M.W. >100000) bound per gram of cellulose.

**Poly rA Binding Capacity:** > 400 A$_{260}$ units/gram

**Notes:**
Store at 4°C. Do not freeze
Supplied as a 50% (v/v) slurry

**References:**

**Recommended use of Oligo(dT)$_{25}$ Cellulose beads:**
1. Prewarm elution buffer by placing in a 70°C water bath for 5 minutes, then add to cellulose beads.
2. Set microcentrifuge at 2000 to 5000 x g.

<table>
<thead>
<tr>
<th>Lot</th>
<th>Store at</th>
<th>Exp</th>
<th>Description: An affinity matrix used for the isolation of mRNA containing polyadenylic (poly A) regions (1). This matrix consists of oligo (dT)$_{25}$ covalently coupled to a cross-linked cellulose bead. This product is guaranteed for six months when stored at 4°C in the supplied storage buffer.</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1408S</td>
<td>250 mg</td>
<td>4°C</td>
<td></td>
</tr>
<tr>
<td>Lot: 0021307</td>
<td>7/16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Low Salt Buffer:**
0.1 M NaCl
10 mM Tris-HCl (pH 7.5)
1.0 mM EDTA

**Poly rA Binding Assay:** A spectrophotometric determination of the amount of poly rA (M.W. >100000) bound per gram of cellulose.

**Poly rA Binding Capacity:** > 400 A$_{260}$ units/gram

**Notes:**
Store at 4°C. Do not freeze
Supplied as a 50% (v/v) slurry

**References:**

**Recommended use of Oligo(dT)$_{25}$ Cellulose beads:**
1. Prewarm elution buffer by placing in a 70°C water bath for 5 minutes.
2. Set microcentrifuge at 2000 to 5000 x g.

8. Wash the Oligo (dT)$_{25}$ cellulose beads 5X with 500 µl volumes of loading buffer, centrifuging for 20 seconds, then carefully decant each wash.

9. Using the same method wash cellulose beads once with 500 µl of low salt buffer.

10. Elute poly(A) + RNA with 2 X 250 µl washes of prewarmed elution buffer. Read A$_{260}$ units.

11. To precipitate add Sodium Acetate [3 M (pH 5.2)] to a final concentration of 0.3 M. Precipitate the RNA with 2.2 volumes of Ethanol at –20°C. Rinse the pellet in 70% Ethanol.

RNA should be stored in 70% Ethanol at –70°C.

**Regeneration of cellulose beads:**
Add 2 X volume of 0.1 N NaOH to cellulose beads. Let stand with agitation for 1 hour at room temperature. Wash with H$_2$O until eluent is pH 7.0. Resuspend in loading buffer.

**Attention:**
It is recommended that no decanted eluents be discarded until entire isolation procedure is done and results evaluated.

8. Wash the Oligo (dT)$_{25}$ cellulose beads 5X with 500 µl volumes of loading buffer, centrifuging for 20 seconds, then carefully decant each wash.

9. Using the same method wash cellulose beads once with 500 µl of low salt buffer.

10. Elute poly(A) + RNA with 2 X 250 µl washes of prewarmed elution buffer. Read A$_{260}$ units.

11. To precipitate add Sodium Acetate [3 M (pH 5.2)] to a final concentration of 0.3 M. Precipitate the RNA with 2.2 volumes of Ethanol at –20°C. Rinse the pellet in 70% Ethanol.

RNA should be stored in 70% Ethanol at –70°C.

**Regeneration of cellulose beads:**
Add 2 X volume of 0.1 N NaOH to cellulose beads. Let stand with agitation for 1 hour at room temperature. Wash with H$_2$O until eluent is pH 7.0. Resuspend in loading buffer.

**Attention:**
It is recommended that no decanted eluents be discarded until entire isolation procedure is done and results evaluated.