

1-800-632-7799 info@neb.com www.neb.com

1000

BioLabs.

1-800-632-7799

info@neb.com

www.neb.com

S1404S

1 µmol	Lot: 0101404
Store at -20°C	Exp: 4/17

m⁷G(5´)ppp(5´)G Sodium Salt

Description: The 5' terminal m⁷G cap present on most eukaryotic mRNAs promotes translation *invitro* at the initiation level (1,2,3). For most RNAs, elimination of the cap structure causes a loss of stability, especially against exonuclease degradation (4), and a decrease in the formation of the initiation complex of mRNAs for protein synthesis (4,5). Certain prokaryotic mRNAs containing a 5'

m⁷G(5´)ppp(5´)G RNA Cap Structure Analog

S1404S

1 µmol	Lot: 0101404
Store at -20°C	Exp: 4/17

m⁷G(5´)ppp(5´)G Sodium Salt

Description: The 5' terminal m⁷G cap present on most eukaryotic mRNAs promotes translation *invitro* at the initiation level (1,2,3). For most RNAs, elimination of the cap structure causes a loss of stability, especially against exonuclease degradation (4), and a decrease in the formation of the initiation complex of mRNAs for protein synthesis (4,5). Certain prokaryotic mRNAs containing a 5'

terminal cap structure are translated as efficiently as or more efficiently than eukaryotic mRNAs in a eukaryotic cell-free protein synthesizing system (5). Also a cap requirement has been observed for splicing eukaryotic substrate RNAs (6).

A method using *E. coli* RNA polymerase primed with $m^7G(5')ppp(5')G$ or $m^7G(5')ppp(5')A$ for an efficient *in vitro* synthesis of capped RNAs has been developed by Contreas (7). Larger amounts of capped RNAs are produced by transcription systems using SP6 RNA polymerase primed with $m^7G(5')ppp(5')G$ (6).

Quality Controls

The purity and identity of $m^7G(5')ppp(5')G$ (Cap Analog) is \geq 95% as determined by HPLC analysis and mass spec respectively.

The RNA Cap Structure Analog is functionally tested for recognition by an RNA Polymerase and its incorporation into a run-off transcript. **Molecular Formula:** $C_{21}H_{30}N_{10}O_{18}P_3$ (Free Acid)

Molecular Weight: 803.44 g/mol (Free acid)

Extinction Coefficient: $\lambda_{260} = ~19,000$ Lmol-1 cm-1

Note: Addition of 100 μI water gives approximately a 10 mM solution.

References:

- 1. Shatkin, A.J. (1978) *Cell* 9, 645–653.
- 2. Fillipowicz, W. (1978) FEBS Lett. 96, 1–11.
- 3. Banerjee, A.K. (1980) *Microbiol. Rev.* 44, 175–205.
- 4. Miura, K. (1981) Adv. Biophys. 14, 205-238.
- Shatkin, A.J. et al. (1977) Nucleic Acids. Res. 4, 3065–3081.
- 6. Konarska, M.M. et al. (1984) Cell 38, 731-736.
- Contreas, R. et al. (1982) Nucleic Acids. Res. 10, 6353–6363.
- Paterson, B.M. and Rosenberg, M. (1979) *Nature* 279, 696–701.

CERTIFICATE OF ANALYSIS

Molecular Formula: $C_{21}H_{30}N_{10}O_{18}P_3$ (Free Acid)

Molecular Weight: 803.44 g/mol (Free acid)

Extinction Coefficient: $\lambda_{260} = ~19,000$ Lmol-1 cm-1

Note: Addition of 100 μI water gives approximately a 10 mM solution.

References:

- 1. Shatkin, A.J. (1978) *Cell* 9, 645–653.
- 2. Fillipowicz, W. (1978) FEBS Lett. 96, 1-11.
- 3. Banerjee, A.K. (1980) *Microbiol. Rev.* 44, 175–205.
- 4. Miura, K. (1981) Adv. Biophys. 14, 205-238.
- Shatkin, A.J. et al. (1977) Nucleic Acids. Res. 4, 3065–3081.
- 6. Konarska, M.M. et al. (1984) Cell 38, 731-736.
- Contreas, R. et al. (1982) Nucleic Acids. Res. 10, 6353–6363.
- 8. Paterson, B.M. and Rosenberg, M. (1979) *Nature* 279, 696–701.

terminal cap structure are translated as efficiently as or more efficiently than eukaryotic mRNAs in a eukaryotic cell-free protein synthesizing system (5). Also a cap requirement has been observed for splicing eukaryotic substrate RNAs (6).

A method using *E. coli* RNA polymerase primed with $m^7G(5')ppp(5')G$ or $m^7G(5')ppp(5')A$ for an efficient *in vitro* synthesis of capped RNAs has been developed by Contreas (7). Larger amounts of capped RNAs are produced by transcription systems using SP6 RNA polymerase primed with $m^7G(5')ppp(5')G$ (6).

Quality Controls

The purity and identity of $m^7G(5')ppp(5')G$ (Cap Analog) is \geq 95% as determined by HPLC analysis and mass spec respectively.

The RNA Cap Structure Analog is functionally tested for recognition by an RNA Polymerase and its incorporation into a run-off transcript.