Galactosidase

1-800-632-7799
info@neb.com
www.neb.com

1-4 Galactosidase

P0730S

400 units 8,000 U/ml Lot: 0031405
RECOMBINANT Store at -20°C Exp: 5/16

Description: 1-4 Galactosidase is a highly specific endo-β-1-4-galactosidase that catalyzes the hydrolysis of β-1-4 linked D-galactopyranosyl residues from oligosaccharides.

Specificity:

Gal β 1-4 R

Detailed Specificity: Specificity can vary depending on incubation time and branching structure.

Unit Definition Assay: Two fold serial dilutions of 1-4 Galactosidase are incubated with 1 nmol of a particular substrate. The amount of enzyme required to cleave > 95% of the terminal, β-D-galactose from 1 nmol of the terminal, β-D-galactose from 1 nmol of a particular substrate.

Reaction Conditions:

Reagents Supplied with Enzyme:

- 10X G4 Reaction Buffer
- 100 mM NaCl
- 50 mM Sodium Citrate (pH 6.0 @ 25°C) and 1 mM Na2EDTA.

Quality Controls

- Glycosidase Assays: 32 units of β-1-4 Galactosidase were incubated with 0.1 mM of fluorescently-labeled oligosaccharides and glycopeptides, in a 10 µl reaction for 20 hours at 37°C. The reaction products were analyzed by TLC for digestion of substrate.

- Physical Purity: Purified to > 95% homogeneity as determined by SDS-PAGE analysis using Coomassie Blue detection.

Source: Cloned from *Bacteroides fragilis* and expressed in *E. coli* (1).

Supplied in: 50 mM NaCl, 20 mM Tris-HCl (pH 7.5 @ 25°C) and 1 mM Na2EDTA.

Reagents Supplied with Enzyme:

- 10X G4 Reaction Buffer
- 50 mM Sodium Citrate (pH 6.0 @ 25°C) and 100 mM NaCl. Incubate at 37°C.

**Optimal incubation times and enzyme concentrations must be determined empirically for a particular substrate.

Unit Definition: One unit is defined as the amount of enzyme required to cleave > 95% of the terminal, β-D-galactose from 1 nmol of a particular substrate.

Unit Definition Assay: Two fold serial dilutions of 1-4 Galactosidase are incubated with 1 nmol of a particular substrate in 1X G4 Reaction Buffer, in a 10 µl reaction. The reaction mix is incubated for 1 hour at 37°C. Separation of reaction products are visualized via thin layer chromatography (2).

Specific Activity: 50,000 units/mg

Molecular Weight: 94,000 daltons.

Quality Assurance: No contaminating exoglycosidase or proteolytic activity could be detected.

Quality Controls

- Glycosidase Assays: 32 units of β-1-4 Galactosidase were incubated with 0.1 mM of fluorescently-labeled oligosaccharides and glycopeptides, in a 10 µl reaction for 20 hours at 37°C. The reaction products were analyzed by TLC for digestion of substrate.

- Physical Purity: Purified to > 95% homogeneity as determined by SDS-PAGE analysis using Coomassie Blue detection.

Figure 1: Detailed specificity of β-1-4 Galactosidase. Reactions (A), (B) and (C) contained 2 units, 4 units and 8 units of β-1-4 Galactosidase, respectively, and either 1X G4 or 1X G6 Reaction Buffer in a total reaction volume of 10 µl. Reactions were incubated at 37°C.
No other glycosidase activities were detected (ND) with the following substrates:

β-N-Acetylgalactosaminidase:
GalNAcβ1-3(Fucx1-2)Galβ1-4Glc-AMC

α-N-Acetylgalactosaminidase:
GalNAcα1-3(Fucx1-2)Galβ1-4Glc-AMC

α-Fucosidase:
Fucx1-2Galβ1-4Glc-AMC

α-Galactosidase:
Galα1-3Galβ1-4Glc-AMC

α-Neuraminidase:
Neu5Acα2-3Galβ1-3GlcNAcβ1-3Galβ1-4Glc-AMC

α-Mannosidase:
Manα1-3Manβ1-4GlcNAc-AMC

β-Glucosidase:
Glcβ1-4Glcβ1-4Glc-AMC

α-Glucosidase:
Glcα1-6Glcα1-4Glc-AMC

β-Xylosidase:
Xylβ1-4Xylβ1-4Xylβ1-4Xyl-AMC

β-Mannosidase:
Manβ1-4Manβ1-4Man-AMC

Endo Fα, Fβ, H:
Dansylated invertase high mannose.

Endo Fα, Fβ:
Dansylated fibrinogen biantennary.

PNGase F:
Fluoresceinated fetuin triantennary.

Protease Assay: After incubation of 112 units of β1-4 Galactosidase with 0.2 nmol of a standard mixture of proteins in a 20 µl reaction, for 20 hours at 37°C, no proteolytic activity could be detected by SDS-PAGE.

Note: Recommended storage temperature is –20°C.

Heat Inactivation: 65°C for 10 minutes.

References:

U.S. Patent No. 6,358,724