Neuraminidase A

α2-3,6,8,9 Neuraminidase A

P0722S

<table>
<thead>
<tr>
<th>Units</th>
<th>Concentration</th>
<th>Lot: 0021602</th>
</tr>
</thead>
<tbody>
<tr>
<td>800</td>
<td>20,000 U/ml</td>
<td>0021602</td>
</tr>
</tbody>
</table>

Description: Neuraminidase is the common name for Acetyl-neuraminyl hydrolase (Sialidase). α2-3,6,8,9 Neuraminidase A catalyzes the hydrolysis of all linear and branched non-reducing terminal sialic acid residues from glycoproteins and oligosaccharides. The enzyme releases α2-3 and α2-6 linkages at a slightly higher rate than α2-8 and α2-9 linkages.

Specificity:

<table>
<thead>
<tr>
<th>α2-3</th>
<th>α2-6</th>
<th>>α2-8</th>
<th>α2-9</th>
</tr>
</thead>
<tbody>
<tr>
<td>α2-3</td>
<td>α2-6</td>
<td>>α2-8</td>
<td>α2-9</td>
</tr>
</tbody>
</table>

Detailed Specificity:

α2-3,6,8,9 Neuraminidase A will cleave branched sialic acid residues that are linked to an internal residue. This oligosaccharide from fetuin is an example of a side-branch sialic acid residue that can efficiently be cleaved (1).

Source: Cloned from *Arthrobacter ureafaciens* and expressed in *E. coli* (2).

Molecular Weight: 100,000 daltons.

Quality Assurance: No contaminating exoglycosidase or endoglycosidase F1, F2 or F3 activity could be detected. No contaminating proteolytic activity could be detected.

Quality Controls

Glycosidase Assays: 100 units of α2-3,6,8,9 Neuraminidase A were incubated with 0.1 mM of fluorescein-labeled oligosaccharides and glycopeptides, in a 10 µl reaction for 20 hours at 37°C. The reaction products were analyzed by TLC for digestion of substrate.

No other glycosidase activities were detected (ND) with the following substrates:

β-N-Acetylgalactosaminidase:

GalNAcβ1-4GlcNAcβ1-4GlcNAc-AMC ND

β-N-Acetylgalactosaminidase:

GalNAcβ1-4Galβ1-4Glc-AMC ND

(see other side)

Quality Assurance: No contaminating exoglycosidase or endoglycosidase F1, F2 or F3 activity could be detected. No contaminating proteolytic activity could be detected.

Quality Controls

Glycosidase Assays: 100 units of α2-3,6,8,9 Neuraminidase A were incubated with 0.1 mM of fluorescein-labeled oligosaccharides and glycopeptides, in a 10 µl reaction for 20 hours at 37°C. The reaction products were analyzed by TLC for digestion of substrate.

No other glycosidase activities were detected (ND) with the following substrates:

β-N-Acetylgalactosaminidase:

GalNAcβ1-4GlcNAcβ1-4GlcNAc-AMC ND

β-N-Acetylgalactosaminidase:

GalNAcβ1-4Galβ1-4Glc-AMC ND

(see other side)

α2-3,6,8,9 Neuraminidase A

P0722S

<table>
<thead>
<tr>
<th>Units</th>
<th>Concentration</th>
<th>Lot: 0021602</th>
</tr>
</thead>
<tbody>
<tr>
<td>800</td>
<td>20,000 U/ml</td>
<td>0021602</td>
</tr>
</tbody>
</table>

Description: Neuraminidase is the common name for Acetyl-neuraminyl hydrolase (Sialidase). α2-3,6,8,9 Neuraminidase A catalyzes the hydrolysis of all linear and branched non-reducing terminal sialic acid residues from glycoproteins and oligosaccharides. The enzyme releases α2-3 and α2-6 linkages at a slightly higher rate than α2-8 and α2-9 linkages.

Specificity:

<table>
<thead>
<tr>
<th>α2-3</th>
<th>α2-6</th>
<th>>α2-8</th>
<th>α2-9</th>
</tr>
</thead>
<tbody>
<tr>
<td>α2-3</td>
<td>α2-6</td>
<td>>α2-8</td>
<td>α2-9</td>
</tr>
</tbody>
</table>

Detailed Specificity:

α2-3,6,8,9 Neuraminidase A will cleave branched sialic acid residues that are linked to an internal residue. This oligosaccharide from fetuin is an example of a side-branch sialic acid residue that can efficiently be cleaved (1).

Source: Cloned from *Arthrobacter ureafaciens* and expressed in *E. coli* (2).

Molecular Weight: 100,000 daltons.

Quality Assurance: No contaminating exoglycosidase or endoglycosidase F1, F2 or F3 activity could be detected. No contaminating proteolytic activity could be detected.

Quality Controls

Glycosidase Assays: 100 units of α2-3,6,8,9 Neuraminidase A were incubated with 0.1 mM of fluorescein-labeled oligosaccharides and glycopeptides, in a 10 µl reaction for 20 hours at 37°C. The reaction products were analyzed by TLC for digestion of substrate.

No other glycosidase activities were detected (ND) with the following substrates:

β-N-Acetylgalactosaminidase:

GalNAcβ1-4GlcNAcβ1-4GlcNAc-AMC ND

β-N-Acetylgalactosaminidase:

GalNAcβ1-4Galβ1-4Glc-AMC ND

(see other side)
β-N-Acetylgalactosaminidase:
GalNAcc1-3(Fucocc1-2)Galβ1-4Glc-AMC ND

β-Fucosidase:
Galβ1-1-4(Fucocc1-3)GlcNAcc1-3Galβ1-4Glc-AMC ND
Fucocc1-2Galβ1-4Glc-AMC ND

β-Galactosidase:
Galβ1-3GlcNAcc1-4Galβ1-4Glc-AMC ND
Galβ1-4GlcNAcc1-3Galβ1-4Glc-AMC ND

α-Galactosidase:
Galβ1-3(Fucocc1-2)Galβ1-4Xyl-AMC ND

α-Fucosidase:
Manβ1-4Fucocc1-2GlcNAc-AMC ND

α-Glucosidase:
Glcc1-6Glcocc1-4Glc-AMC ND

β-Xylosidase:
Xylβ1-4Xylβ1-4Xylβ1-4Xyl-AMC ND

β-Mannosidase:
Manβ1-4Manβ1-4Man-AMC ND

Endo F1, F3:
Dansylated invertase high mannosyl. ND

Endo F2, F3:
Dansylated fibrinogen biantennary. ND

Protease Assay:
After incubation of 1,000 units of α2,3,6,8,9 Neuraminidase A with 0.2 nmol of a standard mixture of proteins in a 20 μl reaction, for 20 hours at 37°C, no proteolytic activity could be detected by SDS-PAGE analysis.

Physical Purity:
Purified to > 95% homogeneity as determined by SDS-PAGE analysis using Coomassie Blue detection.

Heat Inactivation:
75°C for 10 minutes.

Reaction Conditions: Optimal incubation times and enzyme concentrations must be determined empirically for a particular substrate. Typical reaction conditions are as follows:
1. Combine 1 µg of glycoprotein or 100 nM of oligosaccharide and H₂O (if necessary) to make a 9 µl total reaction volume.
2. Add 1 µl of 10X GlycoBuffer 1 to make a 10 µl total reaction volume.
3. Add 1 µl of α2,3,6,8,9 Neuraminidase A.
4. Incubate at 37°C for 1 hour.

Notes on Use:
- Reactions may be scaled-up linearly to accommodate larger reaction volumes.
- The amount of exoglycosidase enzyme required varies when different substrates are used. Start with 1–2 µl for 1 µg of glycoprotein or 100 nM of oligosaccharide for one hour in a 10–25 µl reaction. If there is still undigested material, let the reaction go overnight.
- Higher concentrations of enzyme as well as longer incubation times may be necessary for cleavage of branched structures.