pCMV-GLuc 2 Control Plasmid

Description: The pCMV-GLuc 2 Control Plasmid is a mammalian expression vector that encodes the secreted luciferase from the copepod *Gaussia princeps* as a reporter, under the control of the constitutive CMV (cytomegalovirus) promoter. *Gaussia* luciferase (GLuc) is a 19 kDa protein encoded by a "humanized" sequence, and it contains a native signal peptide at the N-terminus that allows it to be secreted from mammalian cells into the cell culture medium (1,2). A neomycin resistance gene (Neo R) allows it to be secreted from mammalian cells into the cell culture medium (1,2). A neomycin resistance gene: 2507–3301

Advantages:
- Multiple samples can be obtained from the same transfected cells (i.e., before and after experimental treatments or at multiple time points).
- GLuc is very stable in the cell culture medium (4°C for several days without any loss in activity). (see other side)
- GLuc does not use the same substrate as *Cypridina* luciferase. Therefore, it is possible to assay both GLuc and CLuc independently in cell culture medium from cells expressing both reporters (3,4).
- The pCMV-GLuc 2 Control Plasmid can be transfected into cells using any standard transfection and stable cell lines can be established using Neomycin selection.

Applications:
- The pCMV-GLuc 2 Control Plasmid can be used as a control for assessing the efficiency of transfection in mammalian cells. Plasmids containing other constitutive promoter elements are also available (see Companion Products Sold Separately).
- GLuc can be used as a stand alone reporter in conjunction with other compatible reporters such as *Cypridina* luciferase (CLuc) (3). GLuc and CLuc are ideally suited for co-expression as both are secreted and highly active enzymes providing ease of use and sensitivity (3,4).

Features of pCMV-GLuc 2 Control Plasmid:
- CMV promoter: 209–863
- GLuc coding: 920–1477
- Start codon: 920–922
- Stop codon: 1475–1477
- Signal peptide: 920–970
- Synthetic poly-A site: 1486–1534
- Neo promoter (SV40): 2120–2455
- Neomycin resistance gene: 2507–3301

Recommended Sequencing Primers for pCMV-GLuc 2 Control Plasmid:

- GLuc 5´ End Reverse Primer (24-mer)

- GLuc 3´ End Forward Primer (20-mer)

Frequently Asked Questions:

- Where can I find the sequence of this plasmid? The sequences of all the plasmids sold by NEB are available online at: https://www.neb.com/tools-and-resources/interactive-tools/dna-sequences-and-maps-tool.
- Can I generate a stable cell line with pCMV-GLuc 2 Control Plasmid? Yes. Selection for neomycin resistant colonies after transfection can be carried out by growing the cells in media containing G418.
- Can I transfet this plasmid into mammalian cells? Yes. In general, for transfection one will need to use plasmid DNA from CsCl prep or Qiagen® Maxi Prep.

Restriction map of pCMV-GLuc Vector. Only unique restriction sites are shown. The complete sequence and restriction map is available at: http://www.neb.com/nebecomm/tech_reference/dna-sequences-and-maps-tool.

Stability:

- GLuc coding: 920–1477
- Start codon: 920–922
- Stop codon: 1475–1477
- CMV promoter: 209–863
- Neomycin resistance gene: 2507–3301

Recommended Sequencing Primers for pCMV-GLuc 2 Control Plasmid:

- GLuc 5´ End Reverse Primer (24-mer)
- GLuc 3´ End Forward Primer (20-mer)

Restriction map of pCMV-GLuc Vector. Only unique restriction sites are shown. The complete sequence and restriction map is available at: http://www.neb.com/nebecomm/tech_reference/dna-sequences-and-maps-tool.

Stability:

- GLuc coding: 920–1477
- Start codon: 920–922
- Stop codon: 1475–1477
- CMV promoter: 209–863
- Neomycin resistance gene: 2507–3301

Recommended Sequencing Primers for pCMV-GLuc 2 Control Plasmid:

- GLuc 5´ End Reverse Primer (24-mer)
- GLuc 3´ End Forward Primer (20-mer)

Restriction map of pCMV-GLuc Vector. Only unique restriction sites are shown. The complete sequence and restriction map is available at: http://www.neb.com/nebecomm/tech_reference/dna-sequences-and-maps-tool.

Stability:

- GLuc coding: 920–1477
- Start codon: 920–922
- Stop codon: 1475–1477
- CMV promoter: 209–863
- Neomycin resistance gene: 2507–3301

Recommended Sequencing Primers for pCMV-GLuc 2 Control Plasmid:

- GLuc 5´ End Reverse Primer (24-mer)
- GLuc 3´ End Forward Primer (20-mer)

Restriction map of pCMV-GLuc Vector. Only unique restriction sites are shown. The complete sequence and restriction map is available at: http://www.neb.com/nebecomm/tech_reference/dna-sequences-and-maps-tool.

Stability:

- GLuc coding: 920–1477
- Start codon: 920–922
- Stop codon: 1475–1477
- CMV promoter: 209–863
- Neomycin resistance gene: 2507–3301

Recommended Sequencing Primers for pCMV-GLuc 2 Control Plasmid:

- GLuc 5´ End Reverse Primer (24-mer)
- GLuc 3´ End Forward Primer (20-mer)

Restriction map of pCMV-GLuc Vector. Only unique restriction sites are shown. The complete sequence and restriction map is available at: http://www.neb.com/nebecomm/tech_reference/dna-sequences-and-maps-tool.

Stability:

- GLuc coding: 920–1477
- Start codon: 920–922
- Stop codon: 1475–1477
- CMV promoter: 209–863
- Neomycin resistance gene: 2507–3301

Recommended Sequencing Primers for pCMV-GLuc 2 Control Plasmid:

- GLuc 5´ End Reverse Primer (24-mer)
- GLuc 3´ End Forward Primer (20-mer)

Restriction map of pCMV-GLuc Vector. Only unique restriction sites are shown. The complete sequence and restriction map is available at: http://www.neb.com/nebecomm/tech_reference/dna-sequences-and-maps-tool.

Stability:

- GLuc coding: 920–1477
- Start codon: 920–922
- Stop codon: 1475–1477
- CMV promoter: 209–863
- Neomycin resistance gene: 2507–3301

Recommended Sequencing Primers for pCMV-GLuc 2 Control Plasmid:

- GLuc 5´ End Reverse Primer (24-mer)
- GLuc 3´ End Forward Primer (20-mer)
How do I assay for GLuc expression?
Both the BioLux® Gaussia Luciferase Assay Kit (NEB #E3300) and the BioLux Gaussia Luciferase Flex Assay Kit (NEB #E3308) can be used to detect GLuc expression.

Is there another secreted reporter that can be used with GLuc?
Yes. Gaussia and Cypridina are both secreted luciferases, which produce high bioluminescent signal intensity. They oxidize different substrates that do not cross-react with each other. Therefore, Gaussia and Cypridina are an ideal duo for co-transfecting mammalian cells (2,3). Refer to the BioLux Cypridina Luciferase (CLuc) Assay Kits and CLuc expression vectors for more information.

References:

Companion Products Sold Separately:
- BioLux Gaussia Luciferase Assay Kit #E3300S 100 assays
 #E3300L 1,000 assays
- BioLux Gluc Flex Assay Kit #E3308S 100 assays
 #E3308L 1,000 assays
- Luciferase Cell Lysis Buffer #B3321S 25 ml
- pGLuc-Basic 2 Vector #N8082S 20 µg
- pGLuc Mini-TK 2 Vector #N8086S 20 µg
- pSV40-Gluc Control Plasmid #N0323S 20 µg
- pTK-Gluc Vector #N8084S 20 µg
- Anti-Gluc Antibody #N8023S 0.2 ml
- BioLux Cypridina Luciferase Assay Kit #E3309S 100 assays
 #E3309L 1,000 assays
- BioLux Cypridina Luciferase Starter Kit #E3314S 100 assays
 #E3314L 1,000 assays
- pCluc-Basic 2 Vector #N0317S 20 µg
- pCluc Mini-TK 2 Vector #N0324S 20 µg
- pCMV-CLuc 2 Control Plasmid #N0321S 20 µg
- pSV40-CLuc Control Plasmid #N0318S 20 µg
- pTK-CLuc Vector #N0322S 20 µg

LICENSE/PATENTS/DISCLAIMERS:
The CMV promoter is covered under U.S. Patent No. 5,385,839 and its use is permitted for research purposes only. Any other use of the CMV promoter requires a license from the University of Iowa Research Foundation, 214 Technology Innovation Center, Iowa City, IA 52242. By opening this package or by using the materials enclosed within: Recipient is legally bound and accepts the following terms and conditions:

Non-commercial Entities: This product is covered by US Patent 6,232,107 and other patents that are legal property as assigned to Prolume Ltd./Nanolight Technologies. This product is licensed only to the purchasing laboratory-research group. Recipient agrees not to transfer this plasmid or derivatives of this vector to any other laboratory, person or research group, even if within the same institution. Recipient agrees not to alter or make any changes to the nucleotide coding sequence or secretory coding sequence of the luciferase(s) contained within without prior written permission from Prolume Ltd./Nanolight Technologies (www.nanolight.com). Recipient agrees not to file for any patent rights or to any inventions claiming any portion of the luciferase(s) within this material without prior written permission from Prolume Ltd./Nanolight Technologies.

Commercial For-profit Entities & Non-profit Foundations (herein referred to as Commercial Recipients): Commercial recipients wishing to derive products, engage in the sale or license of any products, discover drugs or make inventions by use of the materials enclosed, fully agree to the terms mentioned above for Non-commercial Entities; AND ADDITIONALLY agree to and are hereby bound to use the materials FOR EVALUATION PURPOSES ONLY. Commercial recipient hereby agrees to destroy and cease use of any materials or derivatives containing any portion of these materials within 120 days from receipt. Commercial recipient agrees not to use the materials for any use, other than the 120 day suitability evaluation without prior written permission or obtaining a valid license from Prolume Ltd./Nanolight Technologies.

Any recipient that does not accept the license terms mentioned above, shall return the unopened package and materials to NEB for a full refund.

BIOLUX® is a registered trademark of New England Biolabs, Inc. MOLECULAR DEVICES® is a registered trademark of Molecular Devices, Inc. QIAGEN® is a registered trademark of Qiagen.