SNAP-Cell® Starter Kit

Instruction Manual

NEB #E9100S
10 reactions
Version 2.0 5/19
This product is intended for research purposes only. This product is not intended to be used for therapeutic or diagnostic purposes in humans or animals.

This product is covered by one or more patents, trademarks and/or copyrights owned or controlled by New England Biolabs, Inc. For more information about commercial rights, please email us at gbd@neb.com. While NEB develops and validates its products for various applications, the use of this product may require the buyer to obtain additional third party intellectual property rights for certain applications.

NOTICE TO BUYER/USER: The Buyer/User has a non-exclusive license to use this system or any component thereof for RESEARCH AND DEVELOPMENT PURPOSES ONLY. Commercial use of this system or any components thereof requires a license from New England Biolabs, Inc., 240 County Road Ipswich, MA 01938. For detailed information, see: www.neb.com/cia/legal.

OREGON GREEN® is a registered trademark of Life Technologies, Inc.

© Copyright 2019, New England Biolabs, Inc.; all rights reserved.
Table of Contents:

Introduction .. 2
Construction and Expression of SNAP-tag Fusion Proteins 4
Use of the SNAPf Control Plasmid pSNAPf-Cox8A 7
Labeling SNAP-tag Fusion Proteins .. 8
Use of SNAP-Cell Block to Block Reactivity of SNAPf Fusion Proteins 13
Troubleshooting .. 15
Appendix: Sequence of SNAP-tag region of pSNAPf 17
Ordering Information .. 18

Kit Components:

All kit components should be stored at −20°C except where noted.

pSNAPf Vector .. 20 µg
Supplied in TE buffer (10 mM Tris-HCl, pH 8.0, 1 mM EDTA), 0.5 µg/µl

pSNAPf-Cox8A Control Plasmid .. 20 µg
Supplied in TE buffer (10 mM Tris-HCl, pH 8.0, 1 mM EDTA), 0.5 µg/µl

SNAP-Cell 505-Star ... 10 nmol
Supplied dry. Prepare a stock solution in DMSO as described on page 10.

SNAP-Cell TMR-Star ... 6 nmol
Supplied dry. Prepare a stock solution in DMSO as described on page 10.

SNAP-Cell Block .. 20 nmol
Supplied dry. Prepare a stock solution in DMSO as described on page 13.

Note: For long-term storage, all kit components should be stored at −20°C.
Plasmid solutions can be stored at 4°C for up to one week. Undissolved dye
and blocking substrates can be stored at 4°C for up to 4 weeks protected from
light and moisture. With proper storage at −20°C the substrates should be
stable for at least three years dry or 3 months dissolved in DMSO.

Required Materials Not Included

Mammalian Cell Lines
DNA Transfection Reagents
Standard Tissue Culture Media and Plasticware
DMSO
Hoechst 33342 for Nuclear Staining (optional)
Introduction:
The SNAP-tag® is a novel tool for the specific, covalent attachment of virtually any molecule to a protein of interest, providing simplicity and extraordinary versatility to the imaging of proteins in live and fixed cells, and to the study of proteins in vitro. The creation of a single gene construct yields a tagged fusion protein capable of forming a covalent linkage to a variety of functional groups, including fluorophores, biotin, or beads. This system provides a powerful and unique tool to study the role of proteins in a variety of highly dynamic processes, including protein trafficking, turnover, and complex formation.

The SNAP-tag is a 20 kDa mutant of the human DNA repair protein O^6^-alkylguanine-DNA alkyltransferase (hAGT) that reacts specifically and rapidly with benzylguanine (BG) and benzylchloropyrimidine (CP) derivatives, leading to covalent labeling of the SNAP-tag with a synthetic probe (Figure 1). The SNAP-tag has a number of features that make it ideal for a variety of protein labeling applications. The rate of the reaction of the SNAP-tag with these derivatives is largely independent of the nature of the synthetic probe attached to BG, permitting the labeling of SNAP fusion proteins with a wide variety of functional groups. Many of these SNAP-tag substrates are cell-permeable, allowing live-cell imaging of protein expression and localization (Figure 2). The ability to turn on the signal at will, together with the availability of a cell-permeable nonfluorescent blocking agent (SNAP-Cell Block), allows time-resolved pulse-chase analysis of protein trafficking. Finally, the availability of orthogonal protein labeling systems from NEB permits simultaneous labeling of multiple proteins in a single cell (CLIP-tag, a SNAP-tag variant that reacts exclusively with O^2^-benzylcytosine substrates).

Figure 1.
The SNAP-Cell Starter Kit contains a mammalian expression plasmid (pSNAP) encoding the SNAP-tag flanked by restriction sites for cloning a gene of interest, and two cell-permeable fluorescent SNAP-tag substrates. A positive control plasmid (pSNAP-Cox8A), encoding a SNAP-tagged protein (cytochrome c oxidase 8A) with a well-characterized mitochondrial localization, is also included. Lastly, a negative control “blocking agent” (SNAP-Cell Block) is included that interacts with the SNAP-tag, but is not fluorescent. There are two steps to using this system: subcloning and expression of the protein of interest as a SNAP fusion, and labeling of the fusion with the SNAP-tag substrate of choice.

Figure 2. Live cell imaging of SNAP Fusion Proteins.

Live CHO-K1 cells transiently transfected with pSNAP-H2B. Cells were labeled with SNAP-Cell 505-Star (green) for 15 minutes at 37°C, 5% CO₂.

Live COS-7 cells expressing mitochondrial cytochrome c oxidase 8A-SNAP (SNAP-Cox8A) were labeled with SNAP-Cell TMR-Star (red). Nuclei were counterstained with Hoechst 33342 (blue).
Construction and Expression of SNAP-tag Fusion Proteins:

The mammalian expression plasmid pSNAP is intended for the cloning and stable or transient expression of SNAP-tag protein fusions in mammalian cells. This plasmid encodes the SNAP gene, which is expressed under control of the CMV promoter. The expression vector has an IRES (internal ribosome entry site) and a neomycin resistance gene downstream of SNAP for the efficient selection of stable transfectants. Codon usage of the gene is optimized for expression in mammalian cells. pSNAP contains two multiple cloning sites to allow cloning of the fusion partner as a fusion to the N- or C-terminus of the SNAP-tag.

pSNAP contains an improved version of SNAP-tag, termed SNAP. SNAP displays faster kinetics in in vitro labeling and fast, specific and efficient labeling in live and fixed cell applications, thereby rendering it a desired research tool for analysis of protein dynamics.

Figure 3.
Detailed Description of pSNAP_f

The sequence of the cloning region can be found in the Appendix. The complete plasmid sequence can be downloaded at www.neb.com. This plasmid encodes the gene SNAP_f, which is a mutant form of the gene for human O₆-alkylguanine-DNA-alkyltransferase (hAGT). The codon usage of the gene is optimized for expression in mammalian cells. In the plasmid sequence, the SNAP_f gene is encoded from bp 969 to 1514.

This plasmid is intended for the cloning and stable or transient expression of SNAP-tag protein fusions in mammalian cells. It is particularly suitable for the efficient production of stable cell lines expressing SNAP-tag gene fusions. The plasmid contains the CMV promoter followed by the genes for SNAP_f and neomycin resistance separated by the IRES of the encephalomyocarditis virus (ECMV), which permits the translation of two open reading frames from one messenger RNA. After selection of stable mammalian cells for neomycin resistance, nearly all surviving colonies should therefore stably express the SNAP_f fusion protein. An intron is also included because this is believed to improve expression levels. Unless your expression experiments require a pure population of cells, you can simply use the pool of resistant cells. Otherwise cell clones can be isolated and characterized using standard procedures. The plasmid also contains the beta-lactamase (Ampicillin resistance) gene for maintenance in bacteria. The gene of interest can be cloned upstream or downstream of the SNAP_f coding sequence, as a fusion to the N- or C-terminus of the SNAP_f. pSNAP_f can also be used as an expression control plasmid, expressing the SNAP-tag alone, in which case the SNAP-tag protein is distributed throughout the cell. The SNAP_f gene can be isolated from the plasmid using PCR or direct cloning in order to subclone it into a different vector system of choice.

Cloning of SNAP-tag Fusions in pSNAP_f Vector

Cloning by PCR

1. To subclone the gene of interest into pSNAP_f fused to the N-terminus of SNAP_f, use the available restriction sites: Nhel, EcoRV (blunt), Ascl, Swal (blunt), BsrGI, AgeI or EcoRI, which are located upstream of the SNAP-tag.

2. To subclone the gene of interest into pSNAP_f fused to the C-terminus of SNAP_f, use the available restriction sites downstream of the SNAP-tag: SbfI, BamHI, Pmel (blunt), Xhol, Pacl or NotI.

Note: When fusing the gene of interest to the C-terminus of SNAP_f, note that there is an in-frame stop codon between the Pacl and NotI sites, so SbfI, BamHI, Pmel (blunt), Xhol or Pacl must be used as the 5’ cloning site for your insert.

Pmel and Xhol cannot be used together for cloning because they share a cytosine as part of their recognition sequences.
Primer Design and Cloning Considerations

1. Design your PCR primers to include a sufficient overlap with the sequence of the gene you want to amplify, adding 5–6 bases on the 5´ side of the introduced restriction site to ensure efficient cleavage prior to cloning.

2. A stop codon can be included at the C-terminus of the fusion (in front of the downstream cloning site) in order to terminate translation at this position.

3. For fusions upstream of SNAP, ensure that a start codon is included. The addition of a Kozak sequence (e.g. GCCRCCATG, where the start codon is underlined) will increase the translation efficiency.

4. In general, any linker peptide between the proteins should be kept short to avoid degradation by proteases. If required, specific protease cleavage sites can be introduced into the linker peptide.

5. Care should be taken to design the cloning so that the fusion partners in the resulting construct are in frame.

6. Perform the PCR reaction and subsequent cloning steps according to established molecular biology protocols.

7. The ligated vector should be transformed into bacteria and the resulting plasmid isolated via a standard miniprep procedure.

8. After subcloning the gene of interest into pSNAP as a fusion with the SNAP gene, the resulting plasmid can be used for stable or transient expression of the SNAP fusion proteins in a suitable cell line.

Direct Cloning

1. Direct cloning can also be used to make fusions with the SNAP-tag. This is only possible if the fusion partner has compatible sites adjacent to the gene of interest.

2. Care should be taken to design the cloning strategy so that the fusion partners in the resulting construct are in frame.

Note: When fusing the gene of interest to the C-terminus of SNAP, note that there is a stop codon between the PacI and NotI sites, so SbfI, BamHI, Pmel (blunt), Xhol or PacI must be used as the 5´ cloning site for your insert. Pmel and Xhol cannot be used together for cloning because they share a cytosine as part of their recognition sequences.
Expression of SNAP-tag Fusions

Transient Expression

Expression of the fusion protein cloned in pSNAP can be achieved by transiently transfecting cells in culture with standard transfection protocols. The appropriate reagent and transfection time to permit adequate expression must be empirically determined, using guidelines provided by the manufacturer of the transfection reagent as a starting point. We recommend using pSNAP or pSNAP-Cox8A as expression control plasmids. Figure 2B shows that the COX8-2-SNAP fusion protein (from pSNAP-Cox8A) gives a mitochondrial localized signal when labeled with SNAP-Cell substrates. If the empty pSNAP plasmid is used as a control vector for transfection, a uniform distribution of the SNAP-tag between nucleus and cytoplasm should be seen. Both pSNAP and the localization control plasmids have performed well in stable and transient transfection of CHO-K1, COS-7, U-2 OS and NIH 3T3 cells. Note that the intensity of the fluorescence may vary depending on cell line and labeling substrate used.

Stable Expression

pSNAP and pSNAP-Cox8A can be transfected as described above for transient transfection or by other standard transfection methods. Twenty four to 48 hours after transfection begin selecting mammalian cultures in 600–1,200 µg/ml G418 (geneticin) depending on the cell line. It is recommended that you establish a kill curve for each cell line to determine optimal selection conditions. After 8–12 days of continuous selection, stable colonies will become visible. It is possible to use pools of stable cell populations for initial cell labeling to test for the presence of SNAP-tag expression. In addition, monoclonal cell lines can be isolated and characterized if desired.

Use of the SNAP Control Plasmid pSNAP-Cox8A:

This control plasmid contains the gene encoding the Cytochrome c oxidase, subunit 8–2 (COX8-2) protein cloned upstream of the SNAP coding sequence in pSNAP, as a fusion to the N-terminus of SNAP. Cytochrome c oxidase is localized to the inner mitochondrial membrane and is the terminal enzyme of the respiratory chain. The COX8-2-SNAP fusion protein gives mitochondrial fluorescence when labeled with SNAP-Cell substrates (Figure 2B). The full sequence and map for pSNAP-Cox8A can be downloaded at www.neb.com. We strongly recommend carrying out parallel expression and labeling experiments with this plasmid as a positive control for your experiment, using the procedure described above.
Labeling SNAP-tag Fusion Proteins:
The kit includes two cell-permeable fluorescent SNAP-tag substrates, SNAP-Cell 505-Star and SNAP-Cell TMR-Star. Both can be used to label SNAP-tag fusion proteins inside living or fixed cells, on cell surfaces, or in solution.

SNAP-Cell 505-Star (CP-6-505) is a photostable green fluorescent substrate that is based on the single isomer 6-carboxyrhodamine 110 fluorescent dye and is suitable for standard fluorescein filter sets. It has an excitation maximum at 504 nm and an emission maximum at 532 nm (Figure 4). This kit contains 10 nmol of SNAP-Cell 505-Star substrate, sufficient to make 2 ml of a 5 µM SNAP-tag fusion protein labeling solution.

Figure 4.

(A) Structure of SNAP-Cell 505-Star (MW 621.0 g/mol), (B) Excitation (dotted line) and emission spectra of SNAP-Cell 505-Star after coupling to SNAP-tag in buffer at pH 7.5
SNAP-Cell TMR-Star (CP-TMR-Star) is a red fluorescent substrate that is based on tetramethylrhodamine and is suitable for standard rhodamine filter sets. It has an excitation maximum at 554 nm and an emission maximum at 580 nm (Figure 5). This kit contains 6 nmol of SNAP-Cell TMR-Star substrate, sufficient to make 2 ml of a 3 µM SNAP fusion protein labeling solution.
Instructions for Cellular Labeling

Preparation of Labeling Stock Solution

Dissolve one vial of SNAP-tag substrate in 10 µl of fresh DMSO to yield a labeling stock solution of 1 mM SNAP-Cell 505-Star or 0.6 mM SNAP-Cell TMR-Star. Mix by vortexing for 10 minutes until all the SNAP-tag substrate is dissolved. Store this stock solution in the dark at 4°C, or for extended storage at −20°C. Different stock concentrations can be made, depending on your requirements. The substrates are soluble up to at least 10 mM.

Protocol for Intracellular Labeling Reaction

1. Dilute the labeling stock solution 1:200 in medium to yield a labeling medium of 5 µM SNAP-Cell-505-Star or 3 µM SNAP-Cell TMR-Star. Mix dye with medium thoroughly by pipetting up and down 10 times (necessary for reducing backgrounds). For best performance, add the SNAP-tag substrate to complete medium, including serum (0.5% BSA can be used for experiments carried out in serum-free media). Do not prepare more medium with SNAP-tag substrate than you will consume within one hour.

<table>
<thead>
<tr>
<th>NUMBER OF WELLS IN A PLATE</th>
<th>RECOMMENDED VOLUME FOR CELL LABELING</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>1 ml</td>
</tr>
<tr>
<td>12</td>
<td>500 µl</td>
</tr>
<tr>
<td>24</td>
<td>250 µl</td>
</tr>
<tr>
<td>48</td>
<td>100 µl</td>
</tr>
<tr>
<td>96</td>
<td>50 µl</td>
</tr>
</tbody>
</table>

These recommendations are for culturing cells in polystyrene plates. For confocal imaging, we recommend using chambered coverglass such as Lab-Tek II Chambered Coverglass which is available in a 1, 2, 4 or 8 well format from Nunc (www.nuncbrand.com).

2. Replace the medium on the cells expressing a SNAP fusion protein with the SNAP-tag labeling medium and incubate at 37°C, 5% CO₂ for 10–15 minutes.

3. Wash the cells three times with tissue culture medium containing serum and incubate in fresh medium for 30 minutes. Replace the medium one more time to remove unreacted SNAP-tag substrate that has diffused out of the cells.

4. Image the cells using an appropriate filter set. SNAP fusion proteins labeled with SNAP-Cell 505-Star should have an excitation maximum at 504 nm and an emission maximum at 532 nm, and can be imaged with standard fluorescein filter sets. SNAP fusion proteins labeled with SNAP-Cell TMR-Star should have an excitation maximum at 554 nm and an emission maximum at 580 nm, and can be imaged with standard rhodamine filter sets.
We recommend routinely labeling one well of non-transfected or mock-transfected cells as a negative control.

Notes for Cellular Labeling

Blocking Unreacted SNAP-tag with SNAP-Cell Block

In many cases the labeling of a non-transfected cell sample or a mock-transfected cell sample will be completely sufficient as a control. In some cases, however, it may be desirable to block the SNAP-tag activity in a cell sample expressing the SNAP fusion protein to generate a control. This can be achieved using the included nonfluorescent SNAP-tag substrate, SNAP-Cell Block (bromothenylpteridine, BTP). SNAP-Cell Block may also be used in pulse-chase experiments to block the SNAP-tag reactivity during the chase between two pulse-labeling steps. A protocol for blocking with SNAP-Cell Block is on page 13.

Optimizing Labeling

Optimal substrate concentrations and reaction times range from 1–20 µM and 5–30 minutes, respectively, depending on experimental conditions and expression levels of the SNAP fusion protein. Best results are usually obtained at concentrations between 1 and 5 µM substrate and 10–15 minutes reaction time. Increasing substrate concentration and reaction time usually results in a higher background without necessarily increasing the signal to background ratio.

Stability of Signal

The turnover rates of the SNAP fusion protein under investigation may vary widely depending on the fusion partner. We have seen half-life values ranging from less than one hour to more than 12 hours. Where protein turnover is rapid, we recommend analyzing the cells under the microscope immediately after the labeling reaction or, if the application allows it, fixing the cells directly after labeling. As an alternative to visualize proteins with fast turnover rates, SNAP fusion proteins can be labeled at lower temperatures (4 or 16°C). Labeling times may need to be optimized.

Fixation of Cells

After labeling the SNAP fusion proteins, the cells can be fixed with standard fixation methods such as para-formaldehyde, ethanol, methanol, methanol/acetone etc., without loss of signal. We are not aware of any incompatibility of the SNAP-tag label with any fixation method.

Counterstaining

Cells can be counterstained with any live-cell dye that is compatible with the fluorescent properties of the SNAP-tag substrate for simultaneous microscopic detection. We routinely add 5 µM Hoechst 33342 to the medium prior to the final 30 minutes incubation (Step 3 above) as a DNA counterstain for nuclear visualization. Counterstaining of cells is also possible after fixation and permeabilization.
Immunocytochemistry

Antibody labeling can be performed after SNAP-tag labeling and fixation of the cells according to standard protocols without loss of the SNAP-tag signal. The fixation conditions should be selected based on experience with the protein of interest. For example, some fixation methods destroy epitopes of certain proteins and therefore do not allow antibody staining afterwards.

Instructions for Labeling of Proteins in vitro

1. Dissolve the vial of SNAP-Cell 505-Star (10 nmol) in 10 µl of fresh DMSO or the vial of SNAP-Cell TMR-Star (6 nmol) in 6 µl of fresh DMSO to yield a labeling stock solution of 1 mM SNAP-tag substrate. Mix by vortexing for 10 minutes until all the SNAP-tag substrate is dissolved. Dilute this 1 mM stock solution 1:4 in fresh DMSO to yield a 250 µM stock for labeling proteins in vitro.

2. Set up the reactions, in order, as follows:

<table>
<thead>
<tr>
<th>COMPONENT</th>
<th>VOLUME</th>
<th>FINAL CONCENTRATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphate Buffered Saline (PBS)</td>
<td>42 µl</td>
<td>1X</td>
</tr>
<tr>
<td>50 mM DTT</td>
<td>1 µl</td>
<td>1 mM</td>
</tr>
<tr>
<td>50 µM SNAP-tag Purified Protein</td>
<td>5 µl</td>
<td>5 µM</td>
</tr>
<tr>
<td>250 µM SNAP-tag Substrate</td>
<td>2 µl</td>
<td>10 µM</td>
</tr>
<tr>
<td>Total Volume</td>
<td>50 µl</td>
<td></td>
</tr>
</tbody>
</table>

3. Incubate in the dark for 15 minutes at 37°C.

4. Run sample on an SDS-PAGE gel and detect using a fluorescent gel scanner or store samples at −20°C or −80°C in the dark.

Removal of Unreacted Substrate (optional)

After the labeling reaction, you may wish to separate the nonreacted substrate from the labeled SNAP fusion protein. You can use gel filtration or dialysis. Please refer to the vendor’s instructions for the separation tools you are using.

Note for Labeling in vitro

We recommend the routine addition of 1 mM DTT to all buffers used for handling, labeling, and storage of the SNAP-tag. The stability of the SNAP-tag is improved in the presence of reducing agents; however, it can also be labeled in their absence (e.g. for a redox-sensitive protein) if handling at temperatures above 4°C is minimized. SNAP fusion proteins can be purified before labeling, but the labeling reaction also works in non-purified protein solutions (including cell lysates).
Use of SNAP-Cell Block to Block Reactivity of SNAP\textsubscript{f} Fusion Proteins:

SNAP-Cell Block (bromothenylpteridine, BTP) is a non-fluorescent compound that blocks the reactivity of the SNAP-tag in live cells (Figure 6). It can be used to generate inactive controls in live and fixed cell labeling experiments performed with SNAP\textsubscript{f} fusion proteins. SNAP-Cell Block is highly membrane permeable and once in the cell reacts with the SNAP-tag irreversibly inactivating it for subsequent labeling steps.

![Structure of SNAP-Cell Block (MW 338.2 g/mol).](image)

Instructions for Use with SNAP-Cell Substrates

In many cases the labeling of a non-transfected cell sample or a mock-transfected cell sample will be completely sufficient as a negative control for cell labeling. In some cases, however, it may be desirable to block the SNAP-tag activity in a cell sample expressing the SNAP\textsubscript{f} fusion protein to generate a control. This is done by a pre-incubation of the cells with SNAP-Cell Block, followed by the incubation with the labeling solution. SNAP-Cell Block may also be used in pulse-chase experiments to block the SNAP-tag reactivity during the chase between two pulse-labeling steps.

Note that SNAP-Cell Block is a potent blocker of the SNAP-tag. Always take care to avoid carryover of SNAP-Cell Block to samples that you do not wish to block.

Preparation of Stock Solution

Dissolve one tube of SNAP-Cell Block (20 nmol) in 10 µl of fresh DMSO to give a stock solution of 2 mM. Mix by vortexing for 10 minutes, until all the SNAP-Cell Block is dissolved. Store this stock solution in the dark at 4°C or for extended storage at −20°C. We recommend using a final concentration of 10 µM, which is a 1:200 dilution of this stock solution.
Blocking SNAP-tag Activity with SNAP-Cell Block

The following steps describe the use of SNAP-Cell Block in a typical control labeling experiment:

1. Prepare two cell samples suitable for labeling, each expressing the SNAP fusion protein of interest.

2. Mix an appropriate amount of medium with SNAP-Cell Block stock solution in a ratio of 1:200 to give a blocking medium of 10 µM SNAP-Cell Block. For best performance, add the dissolved SNAP-Cell Block to complete medium, including serum. Do not prepare more medium with SNAP-Cell Block than you will consume within one hour.

3. Mix an appropriate amount of medium with DMSO in a ratio of 1:200, to give a final concentration of 0.5% v/v DMSO.

4. Replace the medium on one sample of cells with the blocking medium. These are your blocked cells. Replace the medium on the other sample of cells with the medium containing DMSO. These are your test cells. Incubate both cell samples at 37°C, 5% CO₂ for 10–15 minutes.

5. Remove SNAP-Cell Block or DMSO-containing medium by washing both samples of cells twice with complete medium.

6. Label both cell samples with the SNAP-Cell substrate using the protocol on page 10.

7. Inspect both samples under the fluorescence microscope. The blocked cells should show no fluorescence, whereas the test cells should show fluorescence localized to where the SNAP fusion protein is present in the cell.

Note that there is a constant turnover and resynthesis of proteins in the cell. After having blocked all existing SNAP fusion proteins within the cell, new SNAP fusion protein molecules may be synthesized in the meantime and may get labeled during incubation with a fluorescent SNAP-tag substrate. This will give the impression that the blocking was ineffective. In order to minimize these effects of protein synthesis and protein transport, cells may have to be treated with cycloheximide and incubation with the fluorescent SNAP-tag substrate may have to be performed at 4°C.
Troubleshooting:
Cloning of the Gene of Interest
If subcloning of the gene of interest into the pSNAP\textsubscript{f} vector does not work, reconfirm all the cloning steps (primer design, choice of restriction site, etc.). If all steps are confirmed as being correct, then try the cloning using different restriction sites. Be sure to include a positive and negative control for the ligation reaction. Alternatively try to subclone the SNAP\textsubscript{f} gene into an expression vector already containing your gene of interest.

Expression
In general we have not experienced problems expressing SNAP\textsubscript{f} protein fusions. However if your fusion protein does not appear to be expressed, try expressing the COX8-2-SNAP\textsubscript{f} protein fusion as a positive control using cells transiently transfected with pSNAP\textsubscript{f}-Cox8A (included). Labeling of such cells with a fluorescent SNAP-Cell substrate should show strong mitochondrial localized fluorescence. The empty pSNAP\textsubscript{f} plasmid can also be used as a control (cytosolic and nuclear fluorescence). Note that the intensity of this fluorescence may vary depending on cell line and substrate used. Expression of the localization controls but not your fusion protein can be due to a variety of causes. It is possible that this fusion protein may be toxic for your cell line. It is difficult to troubleshoot such instances, but the use of a different expression plasmid or cell line or tagging the opposite end of the protein may help. Signs of host cell toxicity could include slow proliferation or apoptosis. Counterstaining live cells with Hoechst 33342 or fixed cells with DAPI can be used to determine whether nuclei are healthy if toxicity is suspected.

Problems with Cellular Labeling

\textit{No Labeling}

If no labeling is seen, the most likely explanation is that the fusion protein is not expressed. Verify your transfection method to confirm that the cells contain the fusion gene of interest. If this is confirmed, check for expression of the SNAP\textsubscript{f} fusion protein. If no antibody against the fusion partner is available Anti-SNAP-tag Antibody (NEB #P9310) can be used. Alternatively, SNAP-Vista Green (NEB #S9147) can be used to confirm presence of SNAP\textsubscript{f} fusion in cell extracts following SDS-PAGE, without the need for Western blotting.

\textit{Weak Labeling}

Weak labeling may be caused by insufficient exposure of the fusion protein to the substrate. Try increasing the concentration of SNAP-tag substrate and/or the incubation time within the range of 1–20 µM and 5–30 minutes, respectively. Alternatively the protein may be poorly expressed and/or turn over rapidly. If the protein has limited stability in the cell, it may help to analyze the samples immediately after labeling.
High Background

Background fluorescence may be controlled by reducing the concentration of SNAP-tag substrate used, and by shortening the incubation time. The presence of fetal calf serum or BSA during the labeling incubation should reduce non-specific binding of substrate to surfaces.

Signal Strongly Reduced after Short Time

If the fluorescence signal decreases rapidly, it may be due to instability of the fusion protein. The signal may be stabilized by fixing the cells. Alternatively try switching the SNAP-tag from the N- to the C-terminus or vice versa. Photobleaching is generally not a problem as both SNAP-Cell 505-Star and SNAP-Cell TMR-Star are very photostable. However, if you experience problems with photobleaching, addition of a commercially available anti-fade reagent may be helpful.

Problems with Labeling in vitro

Solubility

If solubility problems occur with your SNAP fusion protein, we recommend testing a range of pH (pH 5.0–pH 10.0). The salt concentration may also need to be optimized for your particular fusion protein (50–250 mM).

Loss of Protein due to Aggregation or Sticking to Tube

If stickiness of the fusion protein is a problem we recommend adding Tween 20 at a final concentration of 0.05% to 0.1%. The SNAP-tag activity is not affected by this concentration of Tween 20.

Incomplete Labeling

If exhaustive labeling of a protein sample is not achieved using the recommended conditions, try the following protocol modifications: Increase the incubation time to two hours total at 25°C or to 24 hours at 4°C; or halve the volume of protein solution labeled. Both approaches may be combined. If you still have poor labeling results, we recommend checking the activity of the SNAP-tag using SNAP-Vista Green (NEB #S9147).

If the SNAP fusion has been stored in the absence of DTT or other reducing agent, or has been stored at 4°C for a prolonged period, its activity may be compromised. Include 1 mM DTT in all solutions of the SNAP fusion protein, and store the fusion protein at −20°C.

Using less than the recommended amount of substrate stock solution can significantly slow down the reaction rate.

Loss of Activity of Protein of Interest

If your fusion protein is particularly sensitive to degradation or to loss of activity, you can try reducing the labeling time or decreasing the labeling temperature. If you label at 4°C we recommend overnight incubation.
Appendix:
Sequence of SNAP-tag Region of pSNAP\textsubscript{f} Vector

Unique restriction sites in the regions flanking the SNAP\textsubscript{f} gene are displayed above the coding strand. The complete sequence of pSNAP\textsubscript{f} and pSNAP\textsubscript{f}-Cox8A can be downloaded at www.neb.com.

\begin{verbatim}
...GCTAGC GATATCGGGCG CGCCAGCATTT TAAATCTGTA CAGACCGGTGAATTC CGATCG CTATAGGCCGC GCGGTGTAAA ATTTAGACAT GTCTGGCCACTTAAG...
\end{verbatim}

\begin{verbatim}
...CCTGCA GGCGGATCCCG CGTTTAAACT CGAGGTTAATT TAATGAGCGGC CGGC GGACGT CCGCCTAGGC GCAAATTTGA GCTCCAATTA ATTACTCGCC GGCG...
\end{verbatim}

Note

NEB 10-beta Competent \emph{E. coli} (High Efficiency) (NEB #C3019) is recommended for propagating and subcloning of the vector and control plasmid.
<table>
<thead>
<tr>
<th>PRODUCT</th>
<th>NEB #</th>
<th>SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNAP-Cell Starter Kit</td>
<td>E9100S</td>
<td>10 reactions</td>
</tr>
<tr>
<td>COMPANION PRODUCTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNAP-Vista® Green</td>
<td>S9147S</td>
<td>50 nmol</td>
</tr>
<tr>
<td>SNAP-Biotin®</td>
<td>S9110S</td>
<td>50 nmol</td>
</tr>
<tr>
<td>pSNAP-tag(T7)-2 Vector</td>
<td>N9181S</td>
<td>20 µg</td>
</tr>
<tr>
<td>SNAP-Cell 430</td>
<td>S9109S</td>
<td>50 nmol</td>
</tr>
<tr>
<td>SNAP-Cell 505-Star</td>
<td>S9103S</td>
<td>50 nmol</td>
</tr>
<tr>
<td>SNAP-Cell Oregon Green</td>
<td>S9104S</td>
<td>50 nmol</td>
</tr>
<tr>
<td>SNAP-Cell Fluorescein</td>
<td>S9107S</td>
<td>50 nmol</td>
</tr>
<tr>
<td>SNAP-Cell TMR-Star</td>
<td>S9105S</td>
<td>30 nmol</td>
</tr>
<tr>
<td>SNAP-Cell Block</td>
<td>S9106S</td>
<td>100 nmol</td>
</tr>
<tr>
<td>Anti-SNAP-tag Antibody (Polyclonal)</td>
<td>P9310S</td>
<td>100 µl</td>
</tr>
<tr>
<td>SNAP-tag Purified Protein</td>
<td>P9312S</td>
<td>50 µg</td>
</tr>
</tbody>
</table>