Histone H2A/H2B
Dimer Human, Recombinant

2 nmol 20 µM Lot: 0031706
RECOMBINANT Store at –20°C Exp: 6/18

Description: Histone H2A combines with Histone H2B to form the H2A/H2B heterodimer. Two H2A/H2B heterodimers interact with an H3/H4 tetramer to form the histone octamer (1, 2). Histones are also modified by various enzymes and can act as substrates for them. These modifications have been shown to be important in gene regulation. Because the histones are folded with their subunit partners, the dimer may be a better substrate for specific enzymes and modifications (3).

Histone H2A/H2B
Dimer Human, Recombinant

2 nmol 20 µM Lot: 0031706
RECOMBINANT Store at –20°C Exp: 6/18

Description: Histone H2A combines with Histone H2B to form the H2A/H2B heterodimer. Two H2A/H2B heterodimers interact with an H3/H4 tetramer to form the histone octamer (1, 2). Histones are also modified by various enzymes and can act as substrates for them. These modifications have been shown to be important in gene regulation. Because the histones are folded with their subunit partners, the dimer may be a better substrate for specific enzymes and modifications (3).

Histone H2A/H2B
Dimer Human, Recombinant

2 nmol 20 µM Lot: 0031706
RECOMBINANT Store at –20°C Exp: 6/18

Description: Histone H2A combines with Histone H2B to form the H2A/H2B heterodimer. Two H2A/H2B heterodimers interact with an H3/H4 tetramer to form the histone octamer (1, 2). Histones are also modified by various enzymes and can act as substrates for them. These modifications have been shown to be important in gene regulation. Because the histones are folded with their subunit partners, the dimer may be a better substrate for specific enzymes and modifications (3).
This product is intended for research purposes only. This product is not intended to be used for therapeutic or diagnostic purposes in humans or animals.