ET SSB

Applications:
- Improve the processivity of DNA polymerase (1)
- Stabilization and marking of ssDNA structure (2)
- Increase the yield and specificity of PCR reactions (3–7)
- Increase the yield and processivity of RT during RT-PCR (8–9)
- Improve DNA sequencing through regions with strong secondary structure (6)
- Enhance the RecA activity for ssDNA binding and strand transfer (10, 11)

Supplied in: 20 mM Tris-HCl (pH 7.5), 200 mM NaCl, 0.5 mM DTT, 1 mM EDTA and 50% glycerol.

Molecular Weight: 16 kDa.

Quality Assurance: ET SSB is purified free of contaminating endonucleases and exonucleases. Each lot is tested for ssDNA binding activity and is visually determined to be > 95% pure on an SDS-polyacrylamide gel.

Notes On Use: ET SSB is active in any polymerase buffer. Add 200 ng of ET SSB per 50 µl reaction.

References:

END

ET SSB

Applications:
- Improve the processivity of DNA polymerase (1)
- Stabilization and marking of ssDNA structure (2)
- Increase the yield and specificity of PCR reactions (3–7)
- Increase the yield and processivity of RT during RT-PCR (8–9)
- Improve DNA sequencing through regions with strong secondary structure (6)
- Enhance the RecA activity for ssDNA binding and strand transfer (10, 11)

Supplied in: 20 mM Tris-HCl (pH 7.5), 200 mM NaCl, 0.5 mM DTT, 1 mM EDTA and 50% glycerol.

Molecular Weight: 16 kDa.

Quality Assurance: ET SSB is purified free of contaminating endonucleases and exonucleases. Each lot is tested for ssDNA binding activity and is visually determined to be > 95% pure on an SDS-polyacrylamide gel.

Notes On Use: ET SSB is active in any polymerase buffer. Add 200 ng of ET SSB per 50 µl reaction.

References: