

M0487S

BioLabs

1-800-632-7799

info@neb.com

www.neb.com

 100 reactions (50 μl vol)
 Lot: 0191506

 RECOMBINANT
 Store at -20°C
 Exp: 6/16

Description: One *Tag* Quick-Load 2X Master Mix with GC Buffer is an optimized, ready-to-use blend of *Tag* and Deep Vent[™] DNA Polymerases ideally suited to PCR applications from GCrich templates, including pure DNA solutions, bacterial colonies and cDNA products. The $3' \rightarrow 5'$ exonuclease activity of Deep Vent DNA Polymerase increases the fidelity and robust amplification of *Taq* DNA Polymerase (1). The convenient quick-load master mix formulation contains dNTPs, MgSO₄, buffer components and stabilizers as well as two commonly used tracking dves for DNA gels. On a 1% agarose gel in 1X TBE, Xylene Cyanol FF migrates at ~4 kb and Tartrazine migrates at ~10 bp. Both dyes are present in concentrations that do not mask comigrating DNA bands.

Source: An *E. coli* strain that carries the *Taq* DNA Polymerase gene from *Thermus aquaticus* YT-1 and an *E. coli* strain that carries the Deep Vent_R DNA Polymerase gene from *Pyrococcus* species GB-D.

Applications:

- GC-rich PCR
- High Sensitivity PCR
- High Throughput PCR
- Colony PCR
- Long PCR (up to ~6 kb genomic)

Reagents Supplied with Enzyme:

One Taq High GC Enhancer

Reaction Conditions: 1X One *Taq* Quick-Load Master Mix with GC Buffer, DNA template and primers in a total reaction volume of 50 µl.

1X One Taq Quick-Load Master Mix with GC Buffer:

80 mM Tris-SO₄ (pH 9.2 @ 25°C) 2 mM MgSO₄ 20 mM (NH₄)₂SO₄ 0.2 mM dNTPs 5% Glycerol 5% DMSO 0.06% IGEPAL[®] CA-630 0.05% Tween[®] 20 Xylene Cyanol FF Tartrazine 25 units/ml One *Taq* DNA Polymerase

One Taq High GC Enhancer:

10 mM Tris-HCI (pH 9.2 @ 25°C) 25% DMSO 25% Glycerol

Unit Definition: One unit is defined as the amount of enzyme that will incorporate 15 nmol of dNTP into acid insoluble material in 30 minutes at 75°C.

Unit Assay Conditions: 1X ThermoPol® Reaction Buffer, 200 μ M dNTPs including [³H]-dTTP and 15 nM primed M13 DNA.

Heat Inactivation: No

Quality Control Assays

Buffer-dependent GC-rich (> 65% GC) PCR: 30 cycles of PCR amplification of 10 ng of human genomic DNA with 1X One*Taq* Quick-Load Master Mix with GC Buffer in a 25 µl reaction in the presence of 0.2 µM primers resulted in the buffer-dependent production of the 737 bp GC-rich product.

Enhancer-dependent High GC (> 70% GC) PCR:

30 cycles of PCR amplification of 10 ng of human genomic DNA with 1X One*Taq* Quick-Load Master Mix with GC Buffer in a 25 μ I reaction in the presence 0.2 μ M primers and 20% One*Taq* High GC Enhancer resulted in the enhancer-dependent production of the 627 bp high GC product.

Note: Product specifications for individual components in the One*Taq* Quick-Load 2X Master Mix with GC Buffer are available separately.

+20% High GC Enhancer

Amplification of a selection of sequences with varying GC content from human genomic DNA using OneTaq DNA Polymerase. GC content is indicated above gel. Marker M is the 1 kb DNA Ladder (NEB #N3232).

PCR

The Polymerase Chain Reaction (PCR) is a powerful and sensitive technique for DNA amplification (2). *Taq* DNA Polymerase is an enzyme widely used in PCR (3). The following guidelines are provided to ensure successful PCR using New England Biolabs' One *Taq* Quick-Load 2X Master Mix with GC Buffer. These guidelines cover routine PCR reactions. Specialized applications may require further optimization.

Reaction Setup:

We recommend assembling all reaction components on ice and quickly transferring the reactions to a thermocycler preheated to the denaturation temperature (94°C).

COMPONENT	25 μl REACTION	50 μl REACTION	FINAL CONCENTRATION
One <i>Taq</i> Quick-Load 2X Master Mix with GC Buffer	12.5 µl	25 µl	1X
(One <i>Taq</i> High GC Enhancer, optional)*	(2.5–5 µl)	(5–10 µl)	(10–20%)
10 µM Forward Primer	0.5 µl	1 µl	0.2 μM
10 µM Reverse Primer	0.5 µl	1 µl	0.2 μM
Template DNA	variable	variable	<1,000 ng
Nuclease-Free Water	to 25 µl	to 50 µl	

*For extremely difficult or high GC amplicons, the addition of 10–20% One Taq High GC Enhancer may improve amplification.

Notes: Gently mix the reaction. Collect all liquid to the bottom of the tube by a quick spin if necessary. Overlay the sample with mineral oil if using a PCR machine without a heated lid.

Transfer PCR tubes to a PCR machine and begin thermocycling:

Thermocycling Conditions for a Routine PCR:

STEP	ТЕМР	TIME
Initial Denaturation	94°C	30 seconds
30 Cycles	94°C	15–30 seconds
	45–68°C	15-60 seconds
	68°C	1 minute/kb
Final Extension	68°C	5 minutes
Hold	4–10°C	

General Guidelines:

1. Template:

Use of high quality, purified DNA templates greatly enhances the success of PCR reactions. Recommended amounts of DNA template for a 50 µl reaction are as follows:

DNA	AMOUNT
Genomic	1 ng-1 μg
Plasmid or Viral	1 pg-1 ng

2. Primers:

Oligonucleotide primers are generally 20–40 nucleotides in length and ideally have a GC content of 40–60%. Computer programs such as Primer3 (http://frodo.wi.mit.edu/primer3) can be used to design or analyze primers. The final concentration of each primer in a PCR reaction may be 0.05–1 μ M, typically 0.2 μ M.

3. Mg⁺⁺ and Additives:

Mg⁺⁺ concentration of 1.5–2.0 mM is optimal for most PCR products generated with One*Taq* DNA Polymerase. The final Mg⁺⁺ concentration in 1X One*Taq* Quick-Load Master Mix with GC Buffer is 2 mM. This supports satisfactory amplification of most amplicons. However, Mg⁺⁺ can be further optimized in 0.2 mM increments using MgSO, (sold separately).

Amplification of extremely difficult targets may be improved by the addition of 10–20% One *Taq* High GC Enhancer (included).

(see other side)

4. Denaturation:

An initial denaturation of 30 seconds at 94°C is sufficient to amplify most targets from pure DNA templates. For difficult templates, a longer denaturation of 2–4 minutes at 94°C is recommended prior to PCR cycling to fully denature the template. With colony PCR, an initial 2–5 minute denaturation at 94°C is recommended.

During thermocycling a 15–30 second denaturation at 94°C is recommended.

5. Annealing:

The annealing step is typically 15–60 seconds. Annealing temperature is based on the T_m of the primer pair and is typically 45–68°C. Annealing temperatures can be optimized by doing a temperature gradient PCR starting 5°C below the calculated T_m . We recommend using NEB's T_m Calculator, available at www.neb. com/TmCalculator to determine appropriate annealing temperatures for PCR.

6. Extension:

The recommended extension temperature is 68°C. Extension times are generally 1 minute per kb. A final extension of 5 minutes at 68°C is recommended.

7. Cycle Number:

Generally, 25–35 cycles yields sufficient product. Up to 45 cycles may be required to detect low copy number targets.

8. 2-step PCR:

When primers with annealing temperatures of 68°C or above are used, a 2-step thermocycling protocol (combining annealing and extension into one step) is possible.

9. PCR Product:

The majority of the PCR products generated using One*Taq* DNA Polymerase contain dA overhangs at the 3'end; therefore the PCR products can be ligated to dT/dU-overhang vectors.

Notes:

One *Taq* Quick-Load 2X Master Mix with GC Buffer is stable for fifteen freeze-thaw cycles when stored at -20° C.

One*Taq* Quick-Load 2X Master Mix with GC Buffer is also stable for one month at 4°C, so for frequent use, an aliquot may be kept at 4°C.

References:

- 1. Barnes, W.M. (1994) *Proc. Natl. Acad. Sci. USA*, 91, 2216–2220.
- Saiki R.K. et al. (1985) Science, 230, 1350– 1354.
- 3. Powell, L.M. et al. (1987) Cell, 50, 831-840.

Companion Products Sold Separately:

Magnesium Sulfate (MgSO₄) Solution #B1003S 6.0 ml

One Taq Quick-Load 2X Master Mixwith Standard Buffer#M0486S100 Reactions#M0486L500 Reactions

One*Taq* Hot Start Quick-Load 2X Master Mix with Standard Buffer #M0488S 100 Reactions #M0488L 500 Reactions

One*Taq* Hot Start Quick-Load 2X Master Mix with GC Buffer #M0489S 100 Reactions #M0489L 500 Reactions

One*Taq* DNA Polymerase #M0480S 200 units #M0480L 1,000 units

#M0480L	1,000 units
#M0480X	5,000 units

One <i>Taq</i> Hot Start DNA Polymerase		
#M0481S	200 units	
#M0481L	1,000 units	
#M0481X	5,000 units	

NEW ENGLAND BIOLABS[®], ONETAQ[®], QUICK-LOAD[®] and THERMOPOL[®] are registered trademarks of New England Biolabs, Inc. DEEP VENT[®] is a trademark of New England Biolabs, Inc.

IGEPAL® is a registered trademark of Rhodia Operations. TWEEN® is a registered trademark of Uniqema Americas LLC.