β-Agarase I

Description: β-Agarase I cleaves the agarose subunit, unsubstituted neogarobiose [3,6-anhydro-α-L-galactopyranosyl-1-3-o-galactose] to neogarooligosaccharides (1).

Source: Isolated from a strain of *E. coli* that carries a plasmid which encodes the β-Agarase I gene.

Supplied in: 50 mM Bis Tris-HCl (pH 6.5), 1 mM Na2EDTA and 50% glycerol.

Reagents Supplied with Enzyme:
- 10X β-Agarase I Reaction Buffer

Reaction Conditions: 1X β-Agarase I Reaction Buffer. Incubate at 42°C.

1X β-Agarase I Reaction Buffer:
- 10 mM Bis Tris-HCl
- 1 mM EDTA
- pH 6.5 @ 25°C

Unit Definition: One unit is defined as the amount of enzyme required to digest 200 µl of molten low melting point or NuSieve agarose to nonprecipitable neoagarooligosaccharides in 1 hour at 42°C.

Applications: β-Agarase I digests agarose, releasing trapped DNA and producing carbohydrate molecules which can no longer gel. The remaining carbohydrate molecules and β-Agarase I will not, in general, interfere with subsequent DNA manipulations such as restriction endonuclease digestion, ligation and transformation. Inhibition of DNA Polymerase I (Klenow Fragment) has been observed.

β-Agarase I can be used to purify both large (> 50 kb) and small (< 50 kb) fragments of DNA from gels, and the resulting carbohydrates can be removed if necessary.

Heat Inactivation: Incubation at 95°C for 2 minutes or incubation at 65°C for 15 minutes inactivates 50 units of β-Agarase I. β-Agarase I retains activity for several hours at 45–50°C and is stabilized by the presence of agarose in the reaction.

Quality Control Assays

16-hour Incubation: Incubation of 16 units for 16 hours at 42°C in 50 µl 1X β-Agarase I Buffer in the presence of 10 mM MgCl2, and 1 µg phage λ DNA showed no DNA degradation.

Exonuclease Activity: Incubation of 10 units for 4 hours at 42°C in 50 µl 1X β-Agarase I Buffer supplemented with 10 mM MgCl2, and 1 µg sonicated λ DNA (105 cpm/µg) released < 0.1% radioactivity.

Endonuclease Activity: Incubation of 8 units with 1 µg φX174 RF I DNA for 4 hours at 42°C in 50 µl 1X β-Agarase I Buffer supplemented with 10 mM MgCl2 gave < 10% conversion to RF II.

Ribonuclease Activity: Incubation of 4 units with 2 µg of NEB’s RNA Molecular Weight Marker (NEB #N0362S) for 1 hour at 42°C in 50 µl 1X β-Agarase I Buffer followed by agarose gel electrophoresis gave no change in banding.

Agarose Digestion: Equilibrate the DNA-containing low melting point agarose (SeaPlaque GTG or NuSieve GTG) by washing the solid gel slice twice with 2 volumes of 1X β-Agarase I Buffer on ice for 30 minutes.

Remove the remaining buffer and melt the agarose by incubation at 65°C for 10 minutes. Cool to 42°C and incubate the molten agarose with 1 unit of β-Agarase I at 42°C for 1 hour. This procedure will digest up to 200 µl of 1% low melting point agarose. For larger volumes, adjust enzyme accordingly.

*As an alternative method of equilibration, add 1/10 volume of 10X β-Agarase I Buffer and melt together with the agarose. This faster equilibration method requires the amount of enzyme used to be doubled. This method is recommended.

(See other side)

Certificate of Analysis
when working with DNA fragments shorter than 500 base pairs because it avoids diffusion of DNA during washing.

Isolation of DNA
For Small DNA Fragments: DNA is precipitated while carbohydrates remain in solution.
1. Adjust the salt concentration of the β-Agarase I treated solution for isopropanol precipitation of DNA (0.5 M NaCl, 0.3 M NaOAc, 2.5 M NH₄OAc or 0.8 M LiCl).
2. Chill on ice for 15 minutes.
3. Centrifuge at 15,000 X g for 15 minutes to pellet any remaining undigested carbohydrates.
4. Remove the DNA-containing supernatant. Precipitate with 2 volumes of isopropanol. To ensure quantitative yields of small quantities of DNA (<100 ng), carrier RNA (1 µg) can be added to the solution.
5. Mix thoroughly, chill and centrifuge at 15,000 X g for 15 minutes.
6. Remove the supernatant, wash the pellet with cold 70% isopropanol and dry the pellet at room temperature.
7. The pellet can be resuspended in TE or any buffer necessary for subsequent manipulation.

For Large DNA Fragments: Fragments larger than 50 kb require delicate handling to avoid diffusion of DNA during washing.
5. Mix thoroughly, chill and centrifuge at 15,000 X g for 15 minutes.
6. Remove the supernatant, wash the pellet with cold 70% isopropanol and dry the pellet at room temperature.
7. The pellet can be resuspended in TE or any buffer necessary for subsequent manipulation.

Notes on Use:
1. Only low melting point agarose is suitable for β-Agarase I digestion as the solution must be liquid at the incubation temperature of 42°C. If the temperature falls below 42°C during the reaction time, even low melting point agarose will begin to congeal and be undigestable.
2. β-Agarase I is quickly inactivated at temperatures above 45°C. Therefore, when working with large volumes, be sure to leave ample time for the molten agar to equilibrate to 42°C.
3. β-Agarase I works best on gels made with Tris-acetate buffer (TAE). For gels made with Tris-borate buffer (TBE), doubling the required amount of β-Agarase I is recommended.

References:
2. Davis, T. and Guan, C. unpublished observations.

β-Agarase I works most efficiently on solutions containing 1% agarose or lower. For maximum digestion of higher percentage gels, melt the gel slice at 65°C and adjust the volume with 1X β-Agarase I Buffer so that the final concentration of agarose is 1%.
5. β-Agarase I exhibits optimal activity at pH 6.5. Greater than 75% of the optimal activity is maintained between pH 5.0–8.5.
6. Incubation at 95°C for 2 minutes or incubation at 65°C for 15 minutes inactivates 50 units of β-Agarase I. β-Agarase I retains activity for several hours at 40–45°C and is stabilized by the presence of agarose in the reaction.

References:
2. Davis, T. and Guan, C. unpublished observations.

β-Agarase I works most efficiently on solutions containing 1% agarose or lower. For maximum digestion of higher percentage gels, melt the gel slice at 65°C and adjust the volume with 1X β-Agarase I Buffer so that the final concentration of agarose is 1%.
5. β-Agarase I exhibits optimal activity at pH 6.5. Greater than 75% of the optimal activity is maintained between pH 5.0–8.5.
6. Incubation at 95°C for 2 minutes or incubation at 65°C for 15 minutes inactivates 50 units of β-Agarase I. β-Agarase I retains activity for several hours at 40–45°C and is stabilized by the presence of agarose in the reaction.

References:
2. Davis, T. and Guan, C. unpublished observations.