Terminal Transferase

Source: An *E. coli* strain that carries the cloned Terminal Transferase gene from calf thymus.

Applications:
- Addition of homopolymer tails to the 3’ ends of DNA
- Labeling the 3’ ends of DNA with modified nucleotides (e.g., ddNTP, DIG-dUTP)
- TUNEL assay (in situ localization of apoptosis)
- TdT dependent PCR

Description: Terminal Transferase (TdT) is a template independent polymerase that catalyzes the addition of deoxynucleotides to the 3’ hydroxyl terminus of DNA molecules. Protruding, recessed or blunt-ended double or single-stranded DNA molecules serve as a substrate for TdT. The 58.3 KDa enzyme does not have 5’ or 3’ exonuclease activity. The addition of Co²⁺ makes tailing more efficient.

Unit Definition: One unit is defined as the amount of enzyme catalyzing the incorporation of 1 nmol dATP into acid-insoluble material in a total reaction volume of 1 ml in 1 hour at 37°C using d(A)₁₈ as a primer.

Unit Assay Conditions: 1X Terminal Transferase Reaction Buffer, 0.72 µM d(A)₁₈, 0.2 mM dATP and 1.0 µCi [³²P]-dATP in a 50 µl total reaction volume.

Quality Control Assays

Exonuclease Activity: Incubation of 50 units of enzyme with 1 µg sonicated [³²P]-DNA (2 x 10⁶ cpm/µg) for 4 hours at 37°C in 50 µl assay buffer released < 0.5% radioactivity.

Endonuclease Activity: Incubation of 50 units of enzyme with 1 µg pX174 RF I DNA for 4 hours at 37°C in a 50 µl reaction buffer resulted in < 10% conversion to RF II.

Physical Purity: Purified to > 95% homogeneity as determined by SDS-PAGE analysis using Coomassie Blue detection.

Heat Inactivation: 75°C for 20 minutes.

A Typical DNA Tailing Reaction:

1. **Mix:**
 - 5.0 µl 10X TdT Buffer
 - 5.0 µl 2.5 mM CoCl₂ solution provided
 - 5.0 pmols DNA (330 ng for 100 bp, 1 µg for 300 bp, 10 pmols DNA ends)*
 - 0.5 µl 10 mM dNTP (α³²P-dATP may also be used)
 - 0.5 µl Terminal Transferase (20 units/µl) deionized H₂O to a final volume of 50 µl.

2. Incubate at 37°C for 30 minutes.

3. Stop the reaction by heating to 70°C for 10 minutes or by adding 10 µl of 0.2 M EDTA (pH 8.0).

*To determine approximate amount of DNA (ng/pmol), multiply the number of base pairs by 0.66. Example: 300 bp x 0.66 = 198 ng/pmol. For 5.0 pmols multiply by 5, resulting in 990 ng/5 pmol.

A Typical DNA Tailing Reaction:

1. **Mix:**
 - 5.0 µl 10X TdT Buffer
 - 5.0 µl 2.5 mM CoCl₂ solution provided
 - 5.0 pmols DNA (330 ng for 100 bp, 1 µg for 300 bp, 10 pmols DNA ends)*
 - 0.5 µl 10 mM dNTP (α³²P-dATP may also be used)
 - 0.5 µl Terminal Transferase (20 units/µl) deionized H₂O to a final volume of 50 µl.

2. Incubate at 37°C for 30 minutes.

3. Stop the reaction by heating to 70°C for 10 minutes or by adding 10 µl of 0.2 M EDTA (pH 8.0).

*To determine approximate amount of DNA (ng/pmol), multiply the number of base pairs by 0.66. Example: 300 bp x 0.66 = 198 ng/pmol. For 5.0 pmols multiply by 5, resulting in 990 ng/5 pmol.

A Typical DNA Tailing Reaction:

1. **Mix:**
 - 5.0 µl 10X TdT Buffer
 - 5.0 µl 2.5 mM CoCl₂ solution provided
 - 5.0 pmols DNA (330 ng for 100 bp, 1 µg for 300 bp, 10 pmols DNA ends)*
 - 0.5 µl 10 mM dNTP (α³²P-dATP may also be used)
 - 0.5 µl Terminal Transferase (20 units/µl) deionized H₂O to a final volume of 50 µl.

2. Incubate at 37°C for 30 minutes.

3. Stop the reaction by heating to 70°C for 10 minutes or by adding 10 µl of 0.2 M EDTA (pH 8.0).

*To determine approximate amount of DNA (ng/pmol), multiply the number of base pairs by 0.66. Example: 300 bp x 0.66 = 198 ng/pmol. For 5.0 pmols multiply by 5, resulting in 990 ng/5 pmol.

Description: Terminal Transferase (TdT) is a template independent polymerase that catalyzes the addition of deoxynucleotides to the 3’ hydroxyl terminus of DNA molecules. Protruding, recessed or blunt-ended double or single-stranded DNA molecules serve as a substrate for TdT. The 58.3 KDa enzyme does not have 5’ or 3’ exonuclease activity. The addition of Co²⁺ in the reaction makes tailing more efficient.

Source: An *E. coli* strain that carries the cloned Terminal Transferase gene from calf thymus.

Applications:
- Addition of homopolymer tails to the 3’ ends of DNA
- Labeling the 3’ ends of DNA with modified nucleotides (e.g., ddNTP, DIG-dUTP)
- TUNEL assay (in situ localization of apoptosis)
- TdT dependent PCR

Description: Terminal Transferase (TdT) is a template independent polymerase that catalyzes the addition of deoxynucleotides to the 3’ hydroxyl terminus of DNA molecules. Protruding, recessed or blunt-ended double or single-stranded DNA molecules serve as a substrate for TdT. The 58.3 KDa enzyme does not have 5’ or 3’ exonuclease activity. The addition of Co²⁺ in the reaction makes tailing more efficient.

Unit Definition: One unit is defined as the amount of enzyme catalyzing the incorporation of 1 nmol dATP into acid-insoluble material in a total reaction volume of 1 ml in 1 hour at 37°C using d(A)₁₈ as a primer.

Unit Assay Conditions: 1X Terminal Transferase Reaction Buffer, 0.72 µM d(A)₁₈, 0.2 mM dATP and 1.0 µCi [³²P]-dATP in a 50 µl total reaction volume.

Quality Control Assays

Exonuclease Activity: Incubation of 50 units of enzyme with 1 µg sonicated [³²P]-DNA (2 x 10⁶ cpm/µg) for 4 hours at 37°C in 50 µl assay buffer released < 0.5% radioactivity.

Endonuclease Activity: Incubation of 50 units of enzyme with 1 µg pX174 RF I DNA for 4 hours at 37°C in a 50 µl reaction buffer resulted in < 10% conversion to RF II.

Physical Purity: Purified to > 95% homogeneity as determined by SDS-PAGE analysis using Coomassie Blue detection.

Heat Inactivation: 75°C for 20 minutes.

A Typical DNA Tailing Reaction:

1. **Mix:**
 - 5.0 µl 10X TdT Buffer
 - 5.0 µl 2.5 mM CoCl₂ solution provided
 - 5.0 pmols DNA (330 ng for 100 bp, 1 µg for 300 bp, 10 pmols DNA ends)*
 - 0.5 µl 10 mM dNTP (α³²P-dATP may also be used)
 - 0.5 µl Terminal Transferase (20 units/µl) deionized H₂O to a final volume of 50 µl.

2. Incubate at 37°C for 30 minutes.

3. Stop the reaction by heating to 70°C for 10 minutes or by adding 10 µl of 0.2 M EDTA (pH 8.0).

*To determine approximate amount of DNA (ng/pmol), multiply the number of base pairs by 0.66. Example: 300 bp x 0.66 = 198 ng/pmol. For 5.0 pmols multiply by 5, resulting in 990 ng/5 pmol.

The table on the reverse side can be used as a guide (values are approximate and are given for a 30 minutes incubation at 37°C in the recommended buffer).

New Reaction Buffer

New Reaction Buffer

New Reaction Buffer

New Reaction Buffer

New Reaction Buffer
The rate of addition of dNTP’s and thus the length of the tail is a function of the ratio of 3’ DNA ends: dNTP concentration, and also which dNTP is used.

DNA Tailing Guide:

<table>
<thead>
<tr>
<th>pmols 3’ ends pmol dNTP</th>
<th>Tail Length</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>dA dC dG dT</td>
</tr>
<tr>
<td>1:100</td>
<td>1–5 1–3 1–3 1–5</td>
</tr>
<tr>
<td>1:1,000</td>
<td>10–20 10–20 5–10 10–20</td>
</tr>
<tr>
<td>1:5,000</td>
<td>100–300 50–200 10–25 200–300</td>
</tr>
</tbody>
</table>

References: