Endonuclease V

250 units 10,000 U/ml Lot: 0021507
RECOMBINANT Store at –20°C Exp: 7/17

Description: Endonuclease V is a repair enzyme found in E. coli that recognizes deoxyinosine, a deamination product of deoxyadenosine in DNA. Endonuclease V, often called deoxyinosine 3’ endonuclease, recognizes DNA containing deoxyinosinoses (paired or not) on double-stranded DNA, single-stranded DNA with deoxyinosinoses and to a lesser degree, DNA containing abasic sites (ap) or ura, base mismatches, insertion/deletion mismatches, hairpin or unpaired loops, flaps and pseudo-Y structures. It is believed that Endonuclease V needs another protein to repair the DNA, as it does not remove the deoxyinosine or the damaged bases (1,2,3).

Endonuclease V cleaves the second phosphodiester bond 3’ to the mismatch of deoxyinosine (2), leaving a nick with 3´-hydroxyl and 5´-phosphate bond 3´ to the mismatch of deoxyinosine (4).

Source: An E. coli strain containing a gene fusion of the Endo V gene and the gene coding for the maltose binding protein (MBP). The fusion protein is purified to near homogeneity and is active as a maltose binding protein (MBP). The fusion protein of the Endo V gene and the gene coding for the maltose binding protein (MBP). The fusion protein of the Endo V gene and the gene coding for the maltose binding protein (MBP).

Applications:
- Mismatch Cleavage
- Cleavage of oligonucleotides containing deoxyinosine and a weaker affinity for oligonucleotides containing base mismatches (5)

Supplied in: 250 mM NaCl, 10 mM Tris-HCl (pH 7.4 @ 25°C), 0.1 mM EDTA, 1 mM dithiothreitol, 0.15% Triton X-100, 200 µg/ml BSA and 50% glycerol.

Reagents Supplied with Enzyme:
- 10X NEBuffer 4.

Reaction Conditions: 1X NEBuffer 4.
Incubate at 37°C.

1X NEBuffer 4:
- 50 mM potassium acetate
- 20 mM Tris-acetate
- 10 mM magnesium acetate
- 1 mM DTT
- pH 7.9 @ 25°C

When using a buffer other than the optimal (supplied) NEBuffer, it may be necessary to add more enzyme to achieve complete digestion.

Unit Definition: One unit is defined as the amount of enzyme required to cleave 1 pmol of a 34 mer oligonucleotide duplex containing a single deoxyinosine site in a total reaction volume of 10 µl in 1 hour at 37°C.

A deoxyinosine site is synthetically prepared with a dl in the middle of one strand of a 34 mer oligonucleotide duplex.

Diluent Compatibility: Diluent Buffer C
- 250 mM NaCl, 10 mM Tris-HCl, 0.1 mM EDTA,
- 1 mM dithiothreitol, 0.15% Triton X-100,
- 200 µg/ml BSA and 50% glycerol (pH 7.4 @ 25°C).

Unit Assay Conditions: 1X NEBuffer 4 containing 10 pmol of fluorescently labeled oligonucleotide duplex in a total volume of 10 µl.

Quality Control Assays

Physical Purity: Purified to > 95% homogeneity as determined by SDS-PAGE analysis using Coomassie Blue detection.

Exonuclease Activity: Incubation of a 50 µl reaction containing 10 units of Endonuclease V with 1 µg of a mixture of single and double-stranded [3H] E. coli DNA (10⁵ cpm/µg) in NEBuffer 4 for 4 hours at 37°C released < 0.1% of the total radioactivity.

Enzyme Properties

Activity in NEBuffers:
- NEBuffer 1 75%
- NEBuffer 2 50%
- NEBuffer 3 100%
- NEBuffer 4 100%

When using a buffer other than the optimal (supplied) NEBuffer, it may be necessary to add more enzyme to achieve complete digestion.

Heat Inactivation: 65°C for 20 minutes.

References:

Figure 1: S’ fluorescently labeled oligonucleotides contain a 6-carbon phosphodiester spacer that have a structure that may be similar to a urea moiety. Removal of the S’ fluorescent label from an oligonucleotide by Endo V has been observed (6).