Endonuclease V is a repair enzyme found in *E. coli* that recognizes deoxyinosine, a deamination product of deoxyadenosine in DNA. Endonuclease V, often called deoxyinosine 3’ endonuclease, recognizes DNA containing deoxyinosines (paired or not) on double-stranded DNA, single-stranded DNA with deoxyinosines and to a lesser degree, DNA containing abasic sites (ap) or uracil, base mismatches, insertion/deletion mismatches, hairpin or unpaired loops, flaps and pseudo-Y structures. It is believed that Endonuclease V needs another protein to repair the DNA, as it does not remove the deoxyinosine or the damaged bases (1,2,3).

Endonuclease V cleaves the second and third phosphodiester bonds 3’ to the mismatch of deoxyinosine with a 95% efficiency for the second bond and a 5% efficiency for the third bond (2), leaving a nick with 3’-hydroxyl and 5’-phosphate (4).

Description: Endonuclease V is a repair enzyme found in *E. coli* that recognizes deoxyinosine, a deamination product of deoxyadenosine in DNA. Endonuclease V, often called deoxyinosine 3’ endonuclease, recognizes DNA containing deoxyinosines (paired or not) on double-stranded DNA, single-stranded DNA with deoxyinosines and to a lesser degree, DNA containing abasic sites (ap) or uracil, base mismatches, insertion/deletion mismatches, hairpin or unpaired loops, flaps and pseudo-Y structures. It is believed that Endonuclease V needs another protein to repair the DNA, as it does not remove the deoxyinosine or the damaged bases (1,2,3).

Source: An *E. coli* strain containing a gene fusion of the Endo V gene and the gene coding for the maltose binding protein (MBP). The fusion protein is purified to near homogeneity and is active as a fusion. The protein contains 223 amino acids and has a molecular weight of 24.9 kDa (5).

Applications:
- Mismatch Cleavage
- Cleavage of oligonucleotides containing deoxyinosine and a weaker affinity for oligonucleotides containing base mismatches (5)

Supplied in: 250 mM NaCl, 10 mM Tris-HCl (pH 7.4 @ 25°C), 0.1 mM EDTA, 1 mM dithiothreitol, 0.15% Triton X-100, 200 µg/ml BSA and 50% glycerol.

Reagents Supplied with Enzyme:
- 10X NEBuffer 4.
- 1X NEBuffer 4: 50 mM potassium acetate, 20 mM Tris-acetate, 10 mM magnesium acetate, 1 mM DTT, pH 7.9 @ 25°C

When using a buffer other than the optimal (supplied) NEBuffer, it may be necessary to add more enzyme to achieve complete digestion.

Unit Definition: One unit is defined as the amount of enzyme required to cleave 1 pmol of a 34 mer oligonucleotide duplex containing a single deoxyinosine site in a total reaction volume of 10 µl in 1 hour at 37°C.

*A deoxyinosine site is synthetically prepared in a total reaction volume of 10 µl in 1 hour at 37°C.**

Quality Control Assays
- **Physical Purity:** Purified to > 95% homogeneity as determined by SDS-PAGE analysis using Coomassie Blue detection.
- **Exonuclease Activity:** Incubation of a 50 µl reaction containing 10 units of Endonuclease V with 1 µg of a mixture of single and double-stranded [3H] *E. coli* DNA (10^6 cpm/µg) in NEBuffer 1 for 4 hours at 37°C released < 0.1% of the total radioactivity.

Enzyme Properties
- **Activity in NEBuffers:**
 - NEBuffer 1: 75%
 - NEBuffer 2: 50%
 - NEBuffer 3: 100%
 - NEBuffer 4: 100%

When using a buffer other than the optimal (supplied) NEBuffer, it may be necessary to add more enzyme to achieve complete digestion.

Heat Inactivation: 65°C for 20 minutes.

Diluent Compatibility: Diluent Buffer C 250 mM NaCl, 10 mM Tris-HCl, 0.1 mM EDTA, 1 mM dithiothreitol, 0.15% Triton X-100, 200 µg/ml BSA and 50% glycerol (pH 7.4 @ 25°C).

Unit Assay Conditions: 1X NEBuffer 4 containing 10 pmol of fluorescently labeled oligonucleotide duplex in a total volume of 10 µl.

References:

Figure 1: 5’ fluorescently labeled oligonucleotides contain a 6-carbon phosphodiester spacer that have a structure that may be similar to a urea moiety. Removal of the 5’ fluorescent label from an oligonucleotide by Endo V has been observed (6).

Figure 2: The structure of an oligonucleotide containing a uracil moiety at the 5’ end resulting from the hydrolysis of a thymine glycol site. Red arrows indicate Endo V cleavage sites.