**Alkaline Phosphatase, Calf Intestinal (CIP)**

**M0290S**

1,000 units Lot: 0631403 Exp: 3/16

10,000 U/ml Store at –20°C

**Description:** Alkaline Phosphatase, Calf Intestinal (CIP) nonspecifically catalyzes the dephosphorylation of 5’ and 3’ ends of DNA and RNA phosphomonooesters. Also, CIP hydrolyses ribo-, as well as deoxyribonucleoside triphosphates (NTPs and dNTPs). CIP is useful in many molecular biology applications such as the removal of phosphorylated ends of DNA and RNA for subsequent use in cloning or end-labeling of probes. In cloning, dephosphorylation prevents religation of linearized plasmid DNA. The enzyme acts on 5’ protruding, 5’ recessed and blunt ends. CIP may also be used to degrade unincorporated dNTPs in PCR reactions to prepare templates for DNA sequencing or SNP analysis.

**Source:** Calf intestinal mucosa

**Molecular Weight:** CIP is a homodimer. The molecular weight of the monomer is 69 kDa.

**Applications:**
- Dephosphorylation of cloning vector DNA to prevent recircularization during ligation
- Dephosphorylation of DNA prior to end-labeling using T4 Polynucleotide Kinase
- Treatment of dNTPs in PCR reactions prior to sequencing or SNP analysis
- Dephosphorylation of DNA and RNA

**Supplied in:** 50 mM KCl, 10 mM Tris-HCl (pH 8.2 @ 25°C), 1 mM MgCl₂, 0.1 mM ZnCl₂ and 50% glycerol.

**Reagents Supplied with Enzyme:**
- 10X CutSmart™ Reaction Buffer
- 1X CutSmart Reaction Buffer

**Unit Definition:** One unit is defined as the amount of enzyme that hydrolyzes 1 µmol of β-Nitrophenyl Phosphate, PNPP (NEB #P0757) in a total reaction volume of 1 ml in 1 minute at 37°C.

**Applications:** Dephosphorylation of DNA and RNA

**Functional Assay:** Dephosphorylation with CIP of a restriction enzyme-digested vector DNA with 5’ recessed ends, the least favorable type for dephosphorylation, reduces re-ligation to < 0.5% compared to untreated control as measured by transformation into E. coli. CIP has been functionally tested in the following protocol:

**Protocol for Dephosphorylation of 5’-ends of DNA using CIP**

1. Prepare a 20 µl reaction as follows:
   - DNA 1 pmol of DNA ends*
   - CIP 1 unit
   - H₂O, purified to 20 µl**

2. Incubate at 37°C for 30 minutes.

**Note:** 1 pmol of DNA ends is about 1 µg of a 3 kb plasmid.

**Scale larger reaction volumes proportionally.

3. Purify DNA by gel purification, spin-column or phenol extraction.

---

**Alkaline Phosphatase, Calf Intestinal (CIP)**

**M0290S**

1,000 units Lot: 0631403 Exp: 3/16

10,000 U/ml Store at –20°C

**Description:** Alkaline Phosphatase, Calf Intestinal (CIP) nonspecifically catalyzes the dephosphorylation of 5’ and 3’ ends of DNA and RNA phosphomonooesters. Also, CIP hydrolyses ribo-, as well as deoxyribonucleoside triphosphates (NTPs and dNTPs). CIP is useful in many molecular biology applications such as the removal of phosphorylated ends of DNA and RNA for subsequent use in cloning or end-labeling of probes. In cloning, dephosphorylation prevents religation of linearized plasmid DNA. The enzyme acts on 5’ protruding, 5’ recessed and blunt ends. CIP may also be used to degrade unincorporated dNTPs in PCR reactions to prepare templates for DNA sequencing or SNP analysis.

**Source:** Calf intestinal mucosa

**Specific Activity:** ~ 3,000 units/mg

**Molecular Weight:** CIP is a homodimer. The molecular weight of the monomer is 69 kDa.

**Applications:**
- Dephosphorylation of cloning vector DNA to prevent recircularization during ligation
- Dephosphorylation of DNA prior to end-labeling using T4 Polynucleotide Kinase
- Treatment of dNTPs in PCR reactions prior to sequencing or SNP analysis
- Dephosphorylation of DNA and RNA

**Supplied in:** 50 mM KCl, 10 mM Tris-HCl (pH 8.2 @ 25°C), 1 mM MgCl₂, 0.1 mM ZnCl₂ and 50% glycerol.

**Reagents Supplied with Enzyme:**
- 10X CutSmart™ Reaction Buffer
- 1X CutSmart Reaction Buffer

**Unit Definition:** One unit is defined as the amount of enzyme that hydrolyzes 1 µmol of β-Nitrophenyl Phosphate, PNPP (NEB #P0757) in a total reaction volume of 1 ml in 1 minute at 37°C.

**Applications:** Dephosphorylation of DNA and RNA

**Functional Assay:** Dephosphorylation with CIP of a restriction enzyme-digested vector DNA with 5’ recessed ends, the least favorable type for dephosphorylation, reduces re-ligation to < 0.5% compared to untreated control as measured by transformation into E. coli. CIP has been functionally tested in the following protocol:

**Protocol for Dephosphorylation of 5’-ends of DNA using CIP**

1. Prepare a 20 µl reaction as follows:
   - DNA 1 pmol of DNA ends*
   - CIP 1 unit
   - H₂O, purified to 20 µl**

2. Incubate at 37°C for 30 minutes.

**Note:** 1 pmol of DNA ends is about 1 µg of a 3 kb plasmid.

**Scale larger reaction volumes proportionally.

3. Purify DNA by gel purification, spin-column or phenol extraction.

---

**Alkaline Phosphatase, Calf Intestinal (CIP)**

**M0290S**

1,000 units Lot: 0631403 Exp: 3/16

10,000 U/ml Store at –20°C

**Description:** Alkaline Phosphatase, Calf Intestinal (CIP) nonspecifically catalyzes the dephosphorylation of 5’ and 3’ ends of DNA and RNA phosphomonooesters. Also, CIP hydrolyses ribo-, as well as deoxyribonucleoside triphosphates (NTPs and dNTPs). CIP is useful in many molecular biology applications such as the removal of phosphorylated ends of DNA and RNA for subsequent use in cloning or end-labeling of probes. In cloning, dephosphorylation prevents religation of linearized plasmid DNA. The enzyme acts on 5’ protruding, 5’ recessed and blunt ends. CIP may also be used to degrade unincorporated dNTPs in PCR reactions to prepare templates for DNA sequencing or SNP analysis.

**Source:** Calf intestinal mucosa

**Specific Activity:** ~ 3,000 units/mg

**Molecular Weight:** CIP is a homodimer. The molecular weight of the monomer is 69 kDa.

**Applications:**
- Dephosphorylation of cloning vector DNA to prevent recircularization during ligation
- Dephosphorylation of DNA prior to end-labeling using T4 Polynucleotide Kinase
- Treatment of dNTPs in PCR reactions prior to sequencing or SNP analysis
- Dephosphorylation of DNA and RNA

**Supplied in:** 50 mM KCl, 10 mM Tris-HCl (pH 8.2 @ 25°C), 1 mM MgCl₂, 0.1 mM ZnCl₂ and 50% glycerol.

**Reagents Supplied with Enzyme:**
- 10X CutSmart™ Reaction Buffer
- 1X CutSmart Reaction Buffer

**Unit Definition:** One unit is defined as the amount of enzyme that hydrolyzes 1 µmol of β-Nitrophenyl Phosphate, PNPP (NEB #P0757) in a total reaction volume of 1 ml in 1 minute at 37°C.

**Applications:** Dephosphorylation of DNA and RNA

**Functional Assay:** Dephosphorylation with CIP of a restriction enzyme-digested vector DNA with 5’ recessed ends, the least favorable type for dephosphorylation, reduces re-ligation to < 0.5% compared to untreated control as measured by transformation into E. coli. CIP has been functionally tested in the following protocol:

**Protocol for Dephosphorylation of 5’-ends of DNA using CIP**

1. Prepare a 20 µl reaction as follows:
   - DNA 1 pmol of DNA ends*
   - CIP 1 unit
   - H₂O, purified to 20 µl**

2. Incubate at 37°C for 30 minutes.

**Note:** 1 pmol of DNA ends is about 1 µg of a 3 kb plasmid.

**Scale larger reaction volumes proportionally.

3. Purify DNA by gel purification, spin-column or phenol extraction.
Protocol for Dephosphorylation of 5’-ends of DNA using CIP in Restriction Enzyme Reaction

1. Digest 1–5 µg of plasmid DNA in a 20 µl reaction as follows:
   - DNA ≥ 1 µl
   - Restriction Enzyme Buffer (10X) 2 µl
   - Restriction Endonuclease 1 µl
   - H₂O, purified to 20 µl

   Note: Scale larger reaction volumes proportionally.

2. Incubate at 37°C for 60 minutes or follow manufacturer’s recommendations.

3. Add 1 unit of CIP for every 1 pmol of DNA ends (about 1 µg of a 3 kb plasmid) and incubate at 37°C for 30–60 minutes.

4. Purify DNA by gel purification, spin-column or phenol extraction.

5. Proceed with ligation.

Usage Notes:
1. CIP, as are most alkaline phosphatases, is a Zn²⁺ and Mg²⁺-dependent enzyme. Our formulation of its storage buffer provides Zn²⁺ and Mg²⁺, which does not require supplemental zinc or other additives in reactions with CIP.

2. CIP is also active in 1X NEBuffers 1.1, 2.1, 3.1, as well as NEBuffers 1, 2, 3, 4 and unique NEBuffer for EcoRI.

3. CIP activity is enhanced in the presence of monovalent salts.

4. CIP is inhibited by metal chelators (e.g. EDTA), inorganic phosphate and phosphate analogs.

Quality Controls Assays

Exonuclease Activity: Incubation of a 50 µl reaction containing 50 units of CIP with 1 µg of a mixture of single and double-stranded [³²P] E. coli DNA for 4 hours at 37°C resulted in < 10% of the total radioactivity.

Endonuclease Activity: Incubation of a 50 µl reaction containing 50 units of CIP with 1 µg of φX174 RF I DNA for 4 hours at 37°C resulted in < 10% conversion to RF II as determined by agarose gel electrophoresis.

RNase Activity: Incubation of a 10 µl reaction containing 10 units of CIP with 40 ng of fluorescein labeled RNA transcript for 4 hours at 37°C resulted in < 10% degradation of the RNA as determined by gel electrophoresis using fluorescence detection.

Physical Purity: Purified to > 95% homogeneity as determined by SDS-PAGE analysis using Coomassie Blue detection.

Heat Inactivation: No

References:

Companion Products Sold Separately:
- T4 DNA Ligase: #M0202S 20,000 units, #M0202L 100,000 units, #M0202T 20,000 units, #M0202M 100,000 units
- Quick Ligation™ Kit: #M2200S 30 rxns, #M2200L 150 rxns
- Instant Sticky-end Ligase Master Mix: #M0370S 50 rxns, #M0370L 250 rxns
- Blunt/TA Ligase Master Mix: #M0367S 50 rxns, #M0367L 250 rxns

Note: CUTSMART™ and QUICK LIGATION™ are trademarks of New England Biolabs, Inc.

New England Biolabs® is a registered trademark of New England Biolabs, Inc.